Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Nov 29;355(1403):1663–1668. doi: 10.1098/rstb.2000.0729

Allele age and a test for selection on rare alleles.

M Slatkin 1
PMCID: PMC1692899  PMID: 11127913

Abstract

An approximate expression for the probability distribution of the age of a neutral allele as a function of its frequency is derived for a population undergoing arbitrary changes in population size. A simple maximum-likelihood estimator of allele age based on frequency is also obtained. The distribution of allele age, combined with a model predicting the extent of intra-allelic variability generated by mutation and recombination, leads to a statistical test of whether a rare allele has experienced natural selection. The test is based on finding whether there is too little or too much intra-allelic variability to be consistent with the observed frequency. The test is applied to the locus, BRCA1, associated with early-onset breast cancer in humans and shows that two common disease-associated alleles (5382insC and 185delAG) appear to have been subject to natural selection.

Full Text

The Full Text of this article is available as a PDF (222.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andolfatto P., Wall J. D., Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. doi: 10.1093/genetics/153.3.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Depaulis F., Veuille M. Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol. 1998 Dec;15(12):1788–1790. doi: 10.1093/oxfordjournals.molbev.a025905. [DOI] [PubMed] [Google Scholar]
  3. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kimura M., Ohta T. The age of a neutral mutant persisting in a finite population. Genetics. 1973 Sep;75(1):199–212. doi: 10.1093/genetics/75.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Li W. H. The first arrival time and mean age of a deleterious mutant gene in a finite population. Am J Hum Genet. 1975 May;27(3):274–286. [PMC free article] [PubMed] [Google Scholar]
  6. Maruyama T. The age of an allele in a finite population. Genet Res. 1974 Apr;23(2):137–143. doi: 10.1017/s0016672300014750. [DOI] [PubMed] [Google Scholar]
  7. Morral N., Bertranpetit J., Estivill X., Nunes V., Casals T., Giménez J., Reis A., Varon-Mateeva R., Macek M., Jr, Kalaydjieva L. The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet. 1994 Jun;7(2):169–175. doi: 10.1038/ng0694-169. [DOI] [PubMed] [Google Scholar]
  8. Neuhausen S. L., Mazoyer S., Friedman L., Stratton M., Offit K., Caligo A., Tomlinson G., Cannon-Albright L., Bishop T., Kelsell D. Haplotype and phenotype analysis of six recurrent BRCA1 mutations in 61 families: results of an international study. Am J Hum Genet. 1996 Feb;58(2):271–280. [PMC free article] [PubMed] [Google Scholar]
  9. Rahman N., Stratton M. R. The genetics of breast cancer susceptibility. Annu Rev Genet. 1998;32:95–121. doi: 10.1146/annurev.genet.32.1.95. [DOI] [PubMed] [Google Scholar]
  10. Rannala B., Slatkin M. Likelihood analysis of disequilibrium mapping, and related problems. Am J Hum Genet. 1998 Feb;62(2):459–473. doi: 10.1086/301709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Risch N., de Leon D., Ozelius L., Kramer P., Almasy L., Singer B., Fahn S., Breakefield X., Bressman S. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet. 1995 Feb;9(2):152–159. doi: 10.1038/ng0295-152. [DOI] [PubMed] [Google Scholar]
  12. Serre J. L., Simon-Bouy B., Mornet E., Jaume-Roig B., Balassopoulou A., Schwartz M., Taillandier A., Boué J., Boué A. Studies of RFLP closely linked to the cystic fibrosis locus throughout Europe lead to new considerations in populations genetics. Hum Genet. 1990 Apr;84(5):449–454. doi: 10.1007/BF00195818. [DOI] [PubMed] [Google Scholar]
  13. Slatkin M., Rannala B. Estimating allele age. Annu Rev Genomics Hum Genet. 2000;1:225–249. doi: 10.1146/annurev.genom.1.1.225. [DOI] [PubMed] [Google Scholar]
  14. Slatkin M., Rannala B. Estimating the age of alleles by use of intraallelic variability. Am J Hum Genet. 1997 Feb;60(2):447–458. [PMC free article] [PubMed] [Google Scholar]
  15. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  16. Stephens J. C., Reich D. E., Goldstein D. B., Shin H. D., Smith M. W., Carrington M., Winkler C., Huttley G. A., Allikmets R., Schriml L. Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998 Jun;62(6):1507–1515. doi: 10.1086/301867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  18. Watterson Reversibility and the age of an allele. I. Moran's infinitely many neutral alleles model. Theor Popul Biol. 1976 Dec;10(3):239–253. doi: 10.1016/0040-5809(76)90018-6. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES