Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Dec 29;355(1404):1685–1754. doi: 10.1098/rstb.2000.0732

The functions of the proprioceptors of the eye muscles.

I M Donaldson 1
PMCID: PMC1692902  PMID: 11205338

Abstract

This article sets out to present a fairly comprehensive review of our knowledge about the functions of the receptors that have been found in the extraocular muscles--the six muscles that move each eye of vertebrates in its orbit--of all the animals in which they have been sought, including Man. Since their discovery at the beginning of the 20th century these receptors have, at various times, been credited with important roles in the control of eye movement and the construction of extrapersonal space and have also been denied any function whatsoever. Experiments intended to study the actions of eye muscle receptors and, even more so, opinions (and indeed polemic) derived from these observations have been influenced by the changing fashions and beliefs about the more general question of how limb position and movement is detected by the brain and which signals contribute to those aspects of this that are perceived (kinaesthesis). But the conclusions drawn from studies on the eye have also influenced beliefs about the mechanisms of kinaesthesis and, arguably, this influence has been even larger than that in the converse direction. Experimental evidence accumulated over rather more than a century is set out and discussed. It supports the view that, at the beginning of the 21st century, there are excellent grounds for believing that the receptors in the extraocular muscles are indeed proprioceptors, that is to say that the signals that they send into the brain are used to provide information about the position and movement of the eye in the orbit. It seems that this information is important in the control of eye movements of at least some types, and in the determination by the brain of the direction of gaze and the relationship of the organism to its environment. In addition, signals from these receptors in the eye muscles are seen to be necessary for the development of normal mechanisms of visual analysis in the mammalian visual cortex and for both the development and maintenance of normal visuomotor behaviour. Man is among those vertebrates to whose brains eye muscle proprioceptive signals provide information apparently used in normal sensorimotor functions; these include various aspects of perception, and of the control of eye movement. It is possible that abnormalities of the eye muscle proprioceptors and their signals may play a part in the genesis of some types of human squint (strabismus); conversely studies of patients with squint in the course of their surgical or pharmacological treatment have yielded much interesting evidence about the central actions of the proprioceptive signals from the extraocular muscles. The results of experiments on the eye have played a large part in the historical controversy, now in at least its third century, about the origin of signals that inform the brain about movement of parts of the body. Some of these results, and more of the interpretations of them, now need to be critically re-examined. The re-examination in the light of recent experiments that is presented here does not support many of the conclusions confidently drawn in the past and leads to both new insights and fresh questions about the roles of information from motor signals flowing out of the brain and that from signals from the peripheral receptors flowing into it. There remain many lacunae in our knowledge and filling some of these will, it is contended, be essential to advance our understanding further. It is argued that such understanding of eye muscle proprioception is a necessary part of the understanding of the physiology and pathophysiology of eye movement control and that it is also essential to an account of how organisms, including Man, build and maintain knowledge of their relationship to the external visual world. The eye would seem to provide a uniquely favourable system in which to study the way in which information derived within the brain about motor actions may interact with signals flowing in from peripheral receptors. The review is constructed in relatively independent sections that deal with particular topics. It ends with a fairly brief piece in which the author sets out some personal views about what has been achieved recently and what most immediately needs to be done. It also suggests some lines of study that appear to the author to be important for the future.

Full Text

The Full Text of this article is available as a PDF (890.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams V. C., Anstee G. Unit activity in the superior colliculus of the cat following passive eye movements. Can J Physiol Pharmacol. 1979 Apr;57(4):359–368. doi: 10.1139/y79-054. [DOI] [PubMed] [Google Scholar]
  2. Abrahams V. C., Rose P. K. Projections of extraocular, neck muscle, and retinal afferents to superior colliculus in the cat: their connections to cells of origin of tectospinal tract. J Neurophysiol. 1975 Jan;38(1):10–18. doi: 10.1152/jn.1975.38.1.10. [DOI] [PubMed] [Google Scholar]
  3. Abuel-Atta A. A., DeSantis M., Wong A. Encapsulated sensory receptors within intraorbital skeletal muscles of a camel. Anat Rec. 1997 Feb;247(2):189–198. doi: 10.1002/(SICI)1097-0185(199702)247:2<189::AID-AR5>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  4. Aigner M., Robert Lukas J., Denk M., Ziya-Ghazvini F., Kaider A., Mayr R. Somatotopic organization of primary afferent perikarya of the guinea-pig extraocular muscles in the trigeminal ganglion: a post-mortem DiI-tracing study. Exp Eye Res. 2000 Apr;70(4):411–418. doi: 10.1006/exer.1999.0828. [DOI] [PubMed] [Google Scholar]
  5. Allin F., Velay J. L., Bouquerel A. Shift in saccadic direction induced in humans by proprioceptive manipulation: a comparison between memory-guided and visually guided saccades. Exp Brain Res. 1996 Aug;110(3):473–481. doi: 10.1007/BF00229147. [DOI] [PubMed] [Google Scholar]
  6. Allum J. H., Graf W. Time constants of vestibular nuclei neurons in the goldfish: a model with ocular propioception. Biol Cybern. 1977 Dec 22;28(2):95–99. doi: 10.1007/BF00335289. [DOI] [PubMed] [Google Scholar]
  7. Alvarado-Mallart R. M., Batini C., Buisseret C., Gueritaud J. P., Horcholle-Bossavit G. Mesencephalic porjections of the rectus lateralis muscle afferents in the cat. Arch Ital Biol. 1975 Feb;113(1):1–20. [PubMed] [Google Scholar]
  8. Alvarado-Mallart R. M., Pinçon-Raymond M. The palisade endings of cat extraocular muscles: a light and electron microscope study. Tissue Cell. 1979;11(3):567–584. doi: 10.1016/0040-8166(79)90063-6. [DOI] [PubMed] [Google Scholar]
  9. Anastasio T. J., Correia M. J. A frequency and time domain study of the horizontal and vertical vestibuloocular reflex in the pigeon. J Neurophysiol. 1988 Apr;59(4):1143–1161. doi: 10.1152/jn.1988.59.4.1143. [DOI] [PubMed] [Google Scholar]
  10. Andersen R. A., Essick G. K., Siegel R. M. Encoding of spatial location by posterior parietal neurons. Science. 1985 Oct 25;230(4724):456–458. doi: 10.1126/science.4048942. [DOI] [PubMed] [Google Scholar]
  11. Andersen R. A., Snyder L. H., Bradley D. C., Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci. 1997;20:303–330. doi: 10.1146/annurev.neuro.20.1.303. [DOI] [PubMed] [Google Scholar]
  12. Ashton J. A., Boddy A., Dean S. R., Milleret C., Donaldson I. M. Afferent signals from cat extraocular muscles in the medial vestibular nucleus, the nucleus praepositus hypoglossi and adjacent brainstem structures. Neuroscience. 1988 Jul;26(1):131–145. doi: 10.1016/0306-4522(88)90132-7. [DOI] [PubMed] [Google Scholar]
  13. Ashton J. A., Boddy A., Donaldson I. M. Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, bufo marinus. Exp Brain Res. 1984;53(2):409–419. doi: 10.1007/BF00238171. [DOI] [PubMed] [Google Scholar]
  14. Ashton J. A., Milleret C., Donaldson I. M. Effects of afferent signals from the extraocular muscles upon units in the cerebellum, vestibular nuclear complex and oculomotor nucleus of the trout. Neuroscience. 1989;31(2):529–541. doi: 10.1016/0306-4522(89)90395-3. [DOI] [PubMed] [Google Scholar]
  15. BACH-Y-RITA P., MURATA K. EXTRAOCULAR PROPRIOCEPTIVE RESPONSES IN THE VI NERVE OF THE CAT. Q J Exp Physiol Cogn Med Sci. 1964 Oct;49:408–416. doi: 10.1113/expphysiol.1964.sp001746. [DOI] [PubMed] [Google Scholar]
  16. BRINDLEY G. S., MERTON P. A. The absence of position sense in the human eye. J Physiol. 1960 Aug;153:127–130. doi: 10.1113/jphysiol.1960.sp006523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bach-Y-Rita P., Ito F. Properties of stretch receptors in cat extraocular muscles. J Physiol. 1966 Oct;186(3):663–688. doi: 10.1113/jphysiol.1966.sp008061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Baker R., Berthoz A. Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res. 1975 Mar 14;86(1):121–127. doi: 10.1016/0006-8993(75)90643-5. [DOI] [PubMed] [Google Scholar]
  19. Baker R., Precht W., Llinas R. Mossy and climbing fiber projections of extraocular muscle afferents to the cerebellum. Brain Res. 1972 Mar 24;38(2):440–445. doi: 10.1016/0006-8993(72)90728-7. [DOI] [PubMed] [Google Scholar]
  20. Bakker D. A., Richmond F. J., Abrahams V. C., Courville J. Patterns of primary afferent termination in the external cuneate nucleus from cervical axial muscles in the cat. J Comp Neurol. 1985 Nov 22;241(4):467–479. doi: 10.1002/cne.902410406. [DOI] [PubMed] [Google Scholar]
  21. Barbas H., Dubrovsky B. Central and peripheral effects of tonic vibratory stimuli to dorsal neck and extraocular muscles in the cat. Exp Neurol. 1981 Oct;74(1):67–85. doi: 10.1016/0014-4886(81)90149-7. [DOI] [PubMed] [Google Scholar]
  22. Barbas H., Dubrovsky B. Excitatory and inhibitory interactions of extraocular and dorsal neck muscle afferents in the cat frontal cortex. Exp Neurol. 1981 Oct;74(1):51–66. doi: 10.1016/0014-4886(81)90148-5. [DOI] [PubMed] [Google Scholar]
  23. Barmack N. H., Pettorossi V. E. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol. 1985 Feb;53(2):481–496. doi: 10.1152/jn.1985.53.2.481. [DOI] [PubMed] [Google Scholar]
  24. Batine C., Buisseret P., Buisseret-Delmas C. Trigeminal pathway of the extrinsic eye muscle afferents in cat. Brain Res. 1975 Feb 21;85(1):74–78. doi: 10.1016/0006-8993(75)91008-2. [DOI] [PubMed] [Google Scholar]
  25. Batini C., Buisseret-Delmas C., Kado R. T. On the fibers of the III, IV and VI cranial nerves of the cat. Arch Ital Biol. 1979 Apr;117(2):111–122. [PubMed] [Google Scholar]
  26. Batini C., Buisseret P., Kado R. T. Extraocular proprioceptive and trigeminal projections to the Purkinje cells of the cerebellar cortex. Arch Ital Biol. 1974 Jan;112(1):1–17. [PubMed] [Google Scholar]
  27. Batini C., Buisseret P. Projections cérébelleuses et trajet périphérique de la proprioception extra-oculaire. C R Acad Sci Hebd Seances Acad Sci D. 1972 Dec 6;275(23):2711–2713. [PubMed] [Google Scholar]
  28. Batini C. Extraocular muscle input to the cerebellar cortex. Prog Brain Res. 1979;50:315–324. doi: 10.1016/S0079-6123(08)60831-6. [DOI] [PubMed] [Google Scholar]
  29. Batini C., Horcholle-Bossavit G. Extraocular muscle afferents and visual input interactions in the superior colliculus of the cat. Prog Brain Res. 1979;50:335–344. doi: 10.1016/S0079-6123(08)60833-X. [DOI] [PubMed] [Google Scholar]
  30. Batini C., Horcholle-Bossavit G. Interaction entre activation visuelle et activation proprioceptive au niveau des neurones du colliculus supérieur. C R Acad Sci Hebd Seances Acad Sci D. 1977 Dec 19;285(16):1491–1493. [PubMed] [Google Scholar]
  31. Batini C. Properties of the receptors of the extraocular muscles. Prog Brain Res. 1979;50:301–314. doi: 10.1016/S0079-6123(08)60830-4. [DOI] [PubMed] [Google Scholar]
  32. Bell C. C. An efference copy which is modified by reafferent input. Science. 1981 Oct 23;214(4519):450–453. doi: 10.1126/science.7291985. [DOI] [PubMed] [Google Scholar]
  33. Bell C. C. Duration of plastic change in a modifiable efference copy. Brain Res. 1986 Mar 26;369(1-2):29–36. doi: 10.1016/0006-8993(86)90510-x. [DOI] [PubMed] [Google Scholar]
  34. Bell C. C. Properties of a modifiable efference copy in an electric fish. J Neurophysiol. 1982 Jun;47(6):1043–1056. doi: 10.1152/jn.1982.47.6.1043. [DOI] [PubMed] [Google Scholar]
  35. Bell C. C. Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol. 1989 Sep;146:229–253. doi: 10.1242/jeb.146.1.229. [DOI] [PubMed] [Google Scholar]
  36. Berthoz A., Yoshida K., Vidal P. P. Horizontal eye movement signals in second-order vestibular nuclei neurons in the cat. Ann N Y Acad Sci. 1981;374:144–156. doi: 10.1111/j.1749-6632.1981.tb30867.x. [DOI] [PubMed] [Google Scholar]
  37. Biguer B., Donaldson I. M., Hein A., Jeannerod M. La vibration des muscles de la nuque modifie la position apparente d'une cible visuelle. C R Acad Sci III. 1986;303(2):43–48. [PubMed] [Google Scholar]
  38. Biguer B., Donaldson I. M., Hein A., Jeannerod M. Neck muscle vibration modifies the representation of visual motion and direction in man. Brain. 1988 Dec;111(Pt 6):1405–1424. doi: 10.1093/brain/111.6.1405. [DOI] [PubMed] [Google Scholar]
  39. Billig I., Buisseret Delmas C., Buisseret P. Identification of nerve endings in cat extraocular muscles. Anat Rec. 1997 Aug;248(4):566–575. doi: 10.1002/(SICI)1097-0185(199708)248:4<566::AID-AR8>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  40. Bloch S., Rivaud S., Martinoya C. Comparing frontal and lateral viewing in the pigeon. III. Different patterns of eye movements for binocular and monocular fixation. Behav Brain Res. 1984 Aug;13(2):173–182. doi: 10.1016/0166-4328(84)90147-5. [DOI] [PubMed] [Google Scholar]
  41. Blumer R., Lukas J. R., Wasicky R., Mayr R. Presence and structure of innervated myotendinous cylinders in sheep extraocular muscle. Neurosci Lett. 1998 May 22;248(1):49–52. doi: 10.1016/s0304-3940(98)00331-0. [DOI] [PubMed] [Google Scholar]
  42. Bock O., Kommerell G. Visual localization after strabismus surgery is compatible with the "outflow" theory. Vision Res. 1986;26(11):1825–1829. doi: 10.1016/0042-6989(86)90134-3. [DOI] [PubMed] [Google Scholar]
  43. Bortolami R., Calzà L., Lucchi M. L., Giardino L., Callegari E., Manni E., Pettorossi V. E., Barazzoni A. M., Lalatta Costerbosa G. Peripheral territory and neuropeptides of the trigeminal ganglion neurons centrally projecting through the oculomotor nerve demonstrated by fluorescent retrograde double-labeling combined with immunocytochemistry. Brain Res. 1991 Apr 26;547(1):82–88. doi: 10.1016/0006-8993(91)90577-i. [DOI] [PubMed] [Google Scholar]
  44. Bortolami R., Lucchi M. L., Pettorossi V. E., Callegari E., Manni E. Localization and somatotopy of sensory cells innervating the extraocular muscles of lamb, pig and cat. Histochemical and electrophysiological investigation. Arch Ital Biol. 1987 Jan;125(1):1–15. [PubMed] [Google Scholar]
  45. Bridgeman B., Stark L. Ocular proprioception and efference copy in registering visual direction. Vision Res. 1991;31(11):1903–1913. doi: 10.1016/0042-6989(91)90185-8. [DOI] [PubMed] [Google Scholar]
  46. Brindley G. S., Goodwin G. M., Kulikowski J. J., Leighton D. Proceedings: Stability of vision with a paralysed eye. J Physiol. 1976 Jun;258(2):65P–666. [PubMed] [Google Scholar]
  47. Browne J. S. Proceedings: The response of de-efferented muscle spindle in sheep extraocular muscles to stretch and vibration. J Physiol. 1974 Oct;242(2):60P–62P. [PubMed] [Google Scholar]
  48. Browne J. S. The responses of muscle spindles in sheep extraocular muscles. J Physiol. 1975 Oct;251(2):483–496. doi: 10.1113/jphysiol.1975.sp011104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Buisseret-Delmas C., Buisseret P. Central projections of extraocular muscle afferents in cat. Neurosci Lett. 1990 Feb 5;109(1-2):48–53. doi: 10.1016/0304-3940(90)90536-i. [DOI] [PubMed] [Google Scholar]
  50. Buisseret-Delmas C., Epelbaum M., Buisseret P. The vestibular nuclei of the cat receive a primary afferent projection from receptors in extraocular muscles. Exp Brain Res. 1990;81(3):654–658. doi: 10.1007/BF02423516. [DOI] [PubMed] [Google Scholar]
  51. Buisseret-Delmas C., Pinganaud G., Compoint C., Buisseret P. Projection from trigeminal nuclei to neurons of the mesencephalic trigeminal nucleus in rat. Neurosci Lett. 1997 Jul 4;229(3):189–192. doi: 10.1016/s0304-3940(97)00452-7. [DOI] [PubMed] [Google Scholar]
  52. Buisseret P. Does extraocular proprioception influence the development of visual processes and the oculomotor system? Prog Brain Res. 1979;50:345–352. doi: 10.1016/S0079-6123(08)60834-1. [DOI] [PubMed] [Google Scholar]
  53. Buisseret P., Gary-Bobo E. Development of visual cortical orientation specificity after dark-rearing: role of extraocular proprioception. Neurosci Lett. 1979 Aug;13(3):259–263. doi: 10.1016/0304-3940(79)91504-0. [DOI] [PubMed] [Google Scholar]
  54. Buisseret P., Gary-Bobo E., Milleret C. Development of the kitten visual cortex depends on the relationship between the plane of eye movements and visual inputs. Exp Brain Res. 1988;72(1):83–94. doi: 10.1007/BF00248503. [DOI] [PubMed] [Google Scholar]
  55. Buisseret P. Influence of extraocular muscle proprioception on vision. Physiol Rev. 1995 Apr;75(2):323–338. doi: 10.1152/physrev.1995.75.2.323. [DOI] [PubMed] [Google Scholar]
  56. Buisseret P., Maffei L. Extraocular proprioceptive projections to the visual cortex. Exp Brain Res. 1977 Jun 27;28(3-4):421–425. doi: 10.1007/BF00235720. [DOI] [PubMed] [Google Scholar]
  57. Buzzard E. F. A Note on the Occurrence of Muscle-Spindles in Ocular Muscles. Proc R Soc Med. 1908;1(NEUROL):83–88. doi: 10.1177/003591570800100640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. COOPER S., DANIEL P. M. Responses from the stretch receptors of the goat's extrinsic eye muscles with an intact motor innervation. Q J Exp Physiol Cogn Med Sci. 1957 Apr;42(2):222–231. doi: 10.1113/expphysiol.1957.sp001252. [DOI] [PubMed] [Google Scholar]
  59. COOPER S., DANIEL P. M., WHITTERIDGE D. Afferent impulses in the oculomotor nerve, from the extrinsic eye muscles. J Physiol. 1951 May;113(4):463–474. doi: 10.1113/jphysiol.1951.sp004588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. COOPER S., DANIEL P. M., WHITTERIDGE D. Muscle spindles and other sensory endings in the extrinsic eye muscles; the physiology and anatomy of these receptors and of their connexions with the brain-stem. Brain. 1955;78(4):564–583. doi: 10.1093/brain/78.4.564. [DOI] [PubMed] [Google Scholar]
  61. COOPER S., DANIEL P. M., WHITTERIDGE D. Nerve impulses in the brainstem of the goat; responses with long latencies obtained by stretching the extrinsic eye muscles. J Physiol. 1953 Jun 29;120(4):491–513. doi: 10.1113/jphysiol.1953.sp004913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. COOPER S., DANIEL P. M., WHITTERIDGE D. Nerve impulses in the brainstem of the goat; short latency responses obtained by stretching the extrinsic eye muscles and the jaw muscles. J Physiol. 1953 Jun 29;120(4):471–490. doi: 10.1113/jphysiol.1953.sp004912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. COOPER S., FILLENZ M. Afferent discharges in response to stretch from the extraocular muscles of the cat and monkey and the innervation of these muscles. J Physiol. 1955 Feb 28;127(2):400–413. doi: 10.1113/jphysiol.1955.sp005266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. COOPER S. The responses of the primary and secondary endings of muscle spindles with intact motor innervation during applied stretch. Q J Exp Physiol Cogn Med Sci. 1961 Oct;46:389–398. doi: 10.1113/expphysiol.1961.sp001558. [DOI] [PubMed] [Google Scholar]
  65. Campos E. C., Chiesi C., Bolzani R. Abnormal spatial localization in patients with herpes zoster ophthalmicus. Evidence for the presence of proprioceptive information. Arch Ophthalmol. 1986 Aug;104(8):1176–1177. doi: 10.1001/archopht.1986.01050200082055. [DOI] [PubMed] [Google Scholar]
  66. Cannon S. C., Robinson D. A. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol. 1987 May;57(5):1383–1409. doi: 10.1152/jn.1987.57.5.1383. [DOI] [PubMed] [Google Scholar]
  67. Coppin C. M., Jack J. J. Internodal length and conduction velocity of cat muscle afferent nerve fibres. J Physiol. 1972 Apr;222(1):92P–93P. [PubMed] [Google Scholar]
  68. Corsi M., Sodi A., Salvi G., Faussone-Pellegrini M. S. Morphological study of extraocular muscle proprioceptor alterations in congenital strabismus. Ophthalmologica. 1990;200(3):154–163. doi: 10.1159/000310097. [DOI] [PubMed] [Google Scholar]
  69. Daunicht W. J., Jaworski E., Eckmiller R. Afferent innervation of extraocular muscles in the rat studied by retrograde and anterograde horseradish peroxidase transport. Neurosci Lett. 1985 May 14;56(2):143–148. doi: 10.1016/0304-3940(85)90120-x. [DOI] [PubMed] [Google Scholar]
  70. Daunicht W. J. Proprioception in extraocular muscles of the rat. Brain Res. 1983 Nov 14;278(1-2):291–294. doi: 10.1016/0006-8993(83)90257-3. [DOI] [PubMed] [Google Scholar]
  71. Demer J. L., Oh S. Y., Poukens V. Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci. 2000 May;41(6):1280–1290. [PubMed] [Google Scholar]
  72. Dengis C. A., Steinbach M. J., Kraft S. P. Registered eye position: short- and long-term effects of botulinum toxin injected into eye muscle. Exp Brain Res. 1998 Apr;119(4):475–482. doi: 10.1007/s002210050363. [DOI] [PubMed] [Google Scholar]
  73. Dixon R., Donaldson I. M. Unit responses to stretch of extrinsic ocular muscles in the lateral geniculate and perigeniculate nuclei of the cat [proceedings]. J Physiol. 1979 Jul;292:28P–28P. [PubMed] [Google Scholar]
  74. Donaldson I. M., Dixon R. A. Excitation of units in the lateral geniculate and contiguous nuclei of the cat by stretch of extrinsic ocular muscles. Exp Brain Res. 1980 Feb;38(3):245–255. doi: 10.1007/BF00236643. [DOI] [PubMed] [Google Scholar]
  75. Donaldson I. M., Hawthorne M. E. Coding of visual information by units in the cat cerebellar vermis. Exp Brain Res. 1979 Jan 2;34(1):27–48. doi: 10.1007/BF00238339. [DOI] [PubMed] [Google Scholar]
  76. Donaldson I. M., Knox P. C. Afferent signals from pigeon extraocular muscles modify the vestibular responses of units in the abducens nucleus. Proc Biol Sci. 1991 Jun 22;244(1311):233–239. doi: 10.1098/rspb.1991.0076. [DOI] [PubMed] [Google Scholar]
  77. Donaldson I. M., Knox P. C. Afferent signals from the extraocular muscles affect the gain of the horizontal vestibulo-ocular reflex in the alert pigeon. Vision Res. 2000;40(8):1001–1011. doi: 10.1016/s0042-6989(99)00246-1. [DOI] [PubMed] [Google Scholar]
  78. Donaldson I. M., Knox P. C. Directionally-specific effects of afferent signals from the extraocular muscles upon responses in the pigeon brainstem to horizontal vestibular stimulation. Neuroscience. 1990;38(1):145–161. doi: 10.1016/0306-4522(90)90381-d. [DOI] [PubMed] [Google Scholar]
  79. Donaldson I. M., Knox P. C. Evidence for corrective effects of afferent signals from the extraocular muscles on single units in the pigeon vestibulo-oculomotor system. Exp Brain Res. 1993;95(2):240–250. doi: 10.1007/BF00229782. [DOI] [PubMed] [Google Scholar]
  80. Donaldson I. M., Long A. C. Interactions between extraocular proprioceptive and visual signals in the superior colliculus of the cat. J Physiol. 1980 Jan;298:85–110. doi: 10.1113/jphysiol.1980.sp013069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Donaldson I. M., Long A. C. Suppression of visual responses in the cat superior colliculus following stretch of extraocular muscles [proceedings]. J Physiol. 1977 Oct;272(1):94P–95P. [PubMed] [Google Scholar]
  82. Donaldson I. M., Long A. C., Tasker T. C. Suppression by nitrous oxide of visual responses in the cerebellar vermis and superior colliculus of cats anaesthetized with chloralose. Brain Res. 1978 Jun 16;148(2):526–529. doi: 10.1016/0006-8993(78)90742-4. [DOI] [PubMed] [Google Scholar]
  83. Donaldson I. M., Nash J. R. Variability of the relative preference for stimulus orientation and direction of movement in some units of the cat visual cortex (areas 17 and 18). J Physiol. 1975 Feb;245(2):305–324. doi: 10.1113/jphysiol.1975.sp010847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Donaldson I. M. Responses in cat suprasylvian cortex (Clare Bishop Area) to stretch of extraocular muscles [proceedings]. J Physiol. 1979 Nov;296:60P–61P. [PubMed] [Google Scholar]
  85. Durand J., Durand-Arczynska W., Vulliemin P. Current-induced volume flow across bovine tracheal epithelium: evidence for sodium-water coupling. J Physiol. 1984 Mar;348:19–34. doi: 10.1113/jphysiol.1984.sp015096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. ELDRED E., GRANIT R., MERTON P. A. Supraspinal control of the muscle spindles and its significance. J Physiol. 1953 Dec 29;122(3):498–523. doi: 10.1113/jphysiol.1953.sp005017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Easton T. A. Patterned inhibition from horizontal eye movement in the cat. Exp Neurol. 1971 Jun;31(3):419–430. doi: 10.1016/0014-4886(71)90244-5. [DOI] [PubMed] [Google Scholar]
  88. Eden A. R., Correia M. J., Steinkuller P. G. Medullary proprioceptive neurons from extraocular muscles in the pigeon identified with horseradish peroxidase. Brain Res. 1982 Apr 8;237(1):15–21. doi: 10.1016/0006-8993(82)90554-6. [DOI] [PubMed] [Google Scholar]
  89. Edney D. P., Porter J. D. Neck muscle afferent projections to the brainstem of the monkey: implications for the neural control of gaze. J Comp Neurol. 1986 Aug 15;250(3):389–398. doi: 10.1002/cne.902500311. [DOI] [PubMed] [Google Scholar]
  90. FENDER D. H., NYE P. W. An investigation of the mechanisms of eye movement control. Kybernetik. 1961 Jul;1:81–88. doi: 10.1007/BF00288819. [DOI] [PubMed] [Google Scholar]
  91. FILLENZ M. Responses in the brainstem of the cat to stretch of extrinsic ocular muscles. J Physiol. 1955 Apr 28;128(1):182–199. doi: 10.1113/jphysiol.1955.sp005298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Fahy F. L., Donaldson I. M. Signals of eye position and velocity in the first-order afferents from pigeon extraocular muscles. Vision Res. 1998 Jun;38(12):1795–1804. doi: 10.1016/s0042-6989(97)00417-3. [DOI] [PubMed] [Google Scholar]
  93. Fiorentini A., Berardi N., Maffei L. Role of extraocular proprioception in the orienting behaviour of cats. Exp Brain Res. 1982;48(1):113–120. doi: 10.1007/BF00239578. [DOI] [PubMed] [Google Scholar]
  94. Fiorentini A., Cenni M. C., Maffei L. Impairment of stereoacuity in cats with oculomotor proprioceptive deafferentation. Exp Brain Res. 1986;63(2):364–368. doi: 10.1007/BF00236853. [DOI] [PubMed] [Google Scholar]
  95. Fiorentini A., Maffei L., Cenni M. C., Tacchi A. Deafferentation of oculomotor proprioception affects depth discrimination in adult cats. Exp Brain Res. 1985;59(2):296–301. doi: 10.1007/BF00230909. [DOI] [PubMed] [Google Scholar]
  96. Fiorentini A., Maffei L. Instability of the eye in the dark and proprioception. Nature. 1977 Sep 22;269(5626):330–331. doi: 10.1038/269330a0. [DOI] [PubMed] [Google Scholar]
  97. Forrester J. M. Rolling movements of the sheep's eye. J Physiol. 1975 Jan;244(1):72P–73P. [PubMed] [Google Scholar]
  98. Fuchs A. F., Kornhuber H. H. Extraocular muscle afferents to the cerebellum of the cat. J Physiol. 1969 Feb;200(3):713–722. doi: 10.1113/jphysiol.1969.sp008718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Gauthier G. M., Nommay D., Vercher J. L. Ocular muscle proprioception and visual localization of targets in man. Brain. 1990 Dec;113(Pt 6):1857–1871. doi: 10.1093/brain/113.6.1857. [DOI] [PubMed] [Google Scholar]
  100. Gauthier G. M., Nommay D., Vercher J. L. The role of ocular muscle proprioception in visual localization of targets. Science. 1990 Jul 6;249(4964):58–61. doi: 10.1126/science.2367852. [DOI] [PubMed] [Google Scholar]
  101. Gauthier G. M., Vercher J. L., Blouin J. Egocentric visual target position and velocity coding: role of ocular muscle proprioception. Ann Biomed Eng. 1995 Jul-Aug;23(4):423–435. doi: 10.1007/BF02584442. [DOI] [PubMed] [Google Scholar]
  102. Gauthier G. M., Vercher J. L., Zee D. S. Changes in ocular alignment and pointing accuracy after sustained passive rotation of one eye. Vision Res. 1994 Oct;34(19):2613–2627. doi: 10.1016/0042-6989(94)90247-x. [DOI] [PubMed] [Google Scholar]
  103. Gauthier G. M., de'Sperati C., Tempia F., Marchetti E., Strata P. Influence of eye motion on adaptive modifications of the vestibulo-ocular reflex in the rat. Exp Brain Res. 1995;103(3):393–401. doi: 10.1007/BF00241498. [DOI] [PubMed] [Google Scholar]
  104. Gernandt B. E. Interactions between extraocular myotatic and ascending vestibular activities. Exp Neurol. 1968 Jan;20(1):120–134. doi: 10.1016/0014-4886(68)90128-3. [DOI] [PubMed] [Google Scholar]
  105. Gioanni H. Stabilizing gaze reflexes in the pigeon (Columba livia). I. Horizontal and vertical optokinetic eye (OKN) and head (OCR) reflexes. Exp Brain Res. 1988;69(3):567–582. doi: 10.1007/BF00247310. [DOI] [PubMed] [Google Scholar]
  106. Gioanni H. Stabilizing gaze reflexes in the pigeon (Columba livia). II. Vestibulo-ocular (VOR) and vestibulo-collic (closed-loop VCR) reflexes. Exp Brain Res. 1988;69(3):583–593. doi: 10.1007/BF00247311. [DOI] [PubMed] [Google Scholar]
  107. Guido W., Salinger W. L., Schroeder C. E. Binocular interactions in the dorsal lateral geniculate nucleus of monocularly paralyzed cats: extraretinal and retinal influences. Exp Brain Res. 1988;70(2):417–428. doi: 10.1007/BF00248366. [DOI] [PubMed] [Google Scholar]
  108. Guthrie B. L., Porter J. D., Sparks D. L. Corollary discharge provides accurate eye position information to the oculomotor system. Science. 1983 Sep 16;221(4616):1193–1195. doi: 10.1126/science.6612334. [DOI] [PubMed] [Google Scholar]
  109. HAMDI F. A., WHITTERIDGE D. The representation of the retina on the optic tectum of the pigeon. Q J Exp Physiol Cogn Med Sci. 1954;39(2):111–119. doi: 10.1113/expphysiol.1954.sp001053. [DOI] [PubMed] [Google Scholar]
  110. HELD R., HEIN A. MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT OF VISUALLY GUIDED BEHAVIOR. J Comp Physiol Psychol. 1963 Oct;56:872–876. doi: 10.1037/h0040546. [DOI] [PubMed] [Google Scholar]
  111. HUNT C. C., KUFFLER S. W. Further study of efferent small-nerve fibers to mammalian muscle spindles; multiple spindle innervation and activity during contraction. J Physiol. 1951 Apr;113(2-3):283–297. doi: 10.1113/jphysiol.1951.sp004572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Harris L. R., Goltz H. C., Steinbach M. J. The effect of gravity on the resting position of the cat's eye. Exp Brain Res. 1993;96(1):107–116. doi: 10.1007/BF00230444. [DOI] [PubMed] [Google Scholar]
  113. Hayman M. R., Donaldson I. M. Changes in dorsal neck muscle activity related to imposed eye movement in the decerebrate pigeon. Neuroscience. 1997 Aug;79(3):943–956. doi: 10.1016/s0306-4522(97)00018-3. [DOI] [PubMed] [Google Scholar]
  114. Hayman M. R., Donaldson J. P., Donaldson I. M. The primary afferent pathway of extraocular muscle proprioception in the pigeon. Neuroscience. 1995 Nov;69(2):671–683. doi: 10.1016/0306-4522(95)00290-y. [DOI] [PubMed] [Google Scholar]
  115. Hayman M. R., Dutia M. B., Donaldson I. M. Afferent signals from pigeon extraocular muscles modify the activity of neck muscles during the vestibulocollic reflex. Proc Biol Sci. 1993 Nov 22;254(1340):115–122. doi: 10.1098/rspb.1993.0135. [DOI] [PubMed] [Google Scholar]
  116. Henry G. H., Bishop P. O., Tupper R. M., Dreher B. Orientation specificity and response variability of cells in the striate cortex. Vision Res. 1973 Sep;13(9):1771–1779. doi: 10.1016/0042-6989(73)90094-1. [DOI] [PubMed] [Google Scholar]
  117. Hodos W., Bessette B. B., Macko K. A., Weiss S. R. Normative data for pigeon vision. Vision Res. 1985;25(10):1525–1527. doi: 10.1016/0042-6989(85)90231-7. [DOI] [PubMed] [Google Scholar]
  118. Hughes A. Vergence in the cat. Vision Res. 1972 Dec;12(12):1961–1994. doi: 10.1016/0042-6989(72)90052-1. [DOI] [PubMed] [Google Scholar]
  119. Ilg U. J., Bridgeman B., Hoffmann K. P. Influence of mechanical disturbance on oculomotor behavior. Vision Res. 1989;29(5):545–551. doi: 10.1016/0042-6989(89)90041-2. [DOI] [PubMed] [Google Scholar]
  120. Ito F., Bach-y-Rita P. Afferent discharges from extraocular muscle in the squirrel monkey. Am J Physiol. 1969 Aug;217(2):332–335. doi: 10.1152/ajplegacy.1969.217.2.332. [DOI] [PubMed] [Google Scholar]
  121. Jami L. Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev. 1992 Jul;72(3):623–666. doi: 10.1152/physrev.1992.72.3.623. [DOI] [PubMed] [Google Scholar]
  122. Jeannerod M., Kennedy H., Magnin M. Corollary discharge: its possible implications in visual and oculomotor interactions. Neuropsychologia. 1979;17(2):241–258. doi: 10.1016/0028-3932(79)90014-9. [DOI] [PubMed] [Google Scholar]
  123. KUFFLER S. W., HUNT C. C., QUILLIAM J. P. Function of medullated small-nerve fibers in mammalian ventral roots; efferent muscle spindle innervation. J Neurophysiol. 1951 Jan;14(1):29–54. doi: 10.1152/jn.1951.14.1.29. [DOI] [PubMed] [Google Scholar]
  124. Kashii S., Matsui Y., Honda Y., Ito J., Sasa M., Takaori S. The role of extraocular proprioception in vestibulo-ocular reflex of rabbits. Invest Ophthalmol Vis Sci. 1989 Oct;30(10):2258–2264. [PubMed] [Google Scholar]
  125. Keller E. L., Robinson D. A. Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol. 1971 Sep;34(5):908–919. doi: 10.1152/jn.1971.34.5.908. [DOI] [PubMed] [Google Scholar]
  126. Kennedy H., Baleydier C. Direct projections from thalamic intralaminar nuclei to extra-striate visual cortex in the cat traced with horseradish peroxidase. Exp Brain Res. 1977 May 23;28(1-2):133–139. doi: 10.1007/BF00237091. [DOI] [PubMed] [Google Scholar]
  127. Kennedy H., Magnin M. Saccadic influences on single neuron activity in the medial bank of the cat's suprasylvian sulcus (Clare Bishop area). Exp Brain Res. 1977 Mar 30;27(3-4):315–317. doi: 10.1007/BF00235506. [DOI] [PubMed] [Google Scholar]
  128. Kettner R. E., Mahamud S., Leung H. C., Sitkoff N., Houk J. C., Peterson B. W., Barto A. G. Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol. 1997 Apr;77(4):2115–2130. doi: 10.1152/jn.1997.77.4.2115. [DOI] [PubMed] [Google Scholar]
  129. Kimura M., Maekawa K. Activity of flocculus Purkinje cells during passive eye movements. J Neurophysiol. 1981 Nov;46(5):1004–1017. doi: 10.1152/jn.1981.46.5.1004. [DOI] [PubMed] [Google Scholar]
  130. Kimura M., Takeda T., Maekawa K. Contribution of eye muscle proprioception to velocity-response characteristics of eye movements: involvement of the cerebellar flocculus. Neurosci Res. 1991 Oct;12(1):160–168. doi: 10.1016/0168-0102(91)90108-b. [DOI] [PubMed] [Google Scholar]
  131. Knox P. C., Donaldson I. M. Afferent signals from the extraocular muscles of the pigeon modify the electromyogram of these muscles during the vestibulo-ocular reflex. Proc Biol Sci. 1991 Dec 23;246(1317):243–250. doi: 10.1098/rspb.1991.0151. [DOI] [PubMed] [Google Scholar]
  132. Knox P. C., Donaldson I. M. Afferent signals from the extraocular muscles of the pigeon modify the vestibulo-ocular reflex. Proc Biol Sci. 1993 Jul 22;253(1336):77–82. doi: 10.1098/rspb.1993.0084. [DOI] [PubMed] [Google Scholar]
  133. Knox P. C., Weir C. R., Murphy P. J. Modification of visually guided saccades by a nonvisual afferent feedback signal. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2561–2565. [PubMed] [Google Scholar]
  134. LARSELL O. The cerebellum of the cat and the monkey. J Comp Neurol. 1953 Aug;99(1):135–199. doi: 10.1002/cne.900990110. [DOI] [PubMed] [Google Scholar]
  135. LUDVIGH E. Control of ocular movements and visual interpretation of environment. AMA Arch Ophthalmol. 1952 Oct;48(4):442–448. doi: 10.1001/archopht.1952.00920010451008. [DOI] [PubMed] [Google Scholar]
  136. LUDVIGH E. Possible role of proprioception in the extraocular muscles. AMA Arch Ophthalmol. 1952 Oct;48(4):436–441. doi: 10.1001/archopht.1952.00920010445007. [DOI] [PubMed] [Google Scholar]
  137. Lal R., Friedlander M. J. Effect of passive eye movement on retinogeniculate transmission in the cat. J Neurophysiol. 1990 Mar;63(3):523–538. doi: 10.1152/jn.1990.63.3.523. [DOI] [PubMed] [Google Scholar]
  138. Lal R., Friedlander M. J. Effect of passive eye position changes on retinogeniculate transmission in the cat. J Neurophysiol. 1990 Mar;63(3):502–522. doi: 10.1152/jn.1990.63.3.502. [DOI] [PubMed] [Google Scholar]
  139. Lemeignan M., Sansonetti A., Gioanni H. Spontaneous saccades under different visual conditions in the pigeon. Neuroreport. 1992 Jan;3(1):17–20. doi: 10.1097/00001756-199201000-00004. [DOI] [PubMed] [Google Scholar]
  140. Lennerstrand G., Bach-y-Rita P. Spindle responses in pig eye muscles. Acta Physiol Scand. 1974 Apr;90(4):795–797. doi: 10.1111/j.1748-1716.1974.tb05649.x. [DOI] [PubMed] [Google Scholar]
  141. Lennerstrand G., Tian S., Han Y. Effects of eye muscle proprioceptive activation on eye position in normal and exotropic subjects. Graefes Arch Clin Exp Ophthalmol. 1997 Feb;235(2):63–69. doi: 10.1007/BF00941731. [DOI] [PubMed] [Google Scholar]
  142. Lewald J., Ehrenstein W. H. Visual and proprioceptive shifts in perceived egocentric direction induced by eye-position. Vision Res. 2000;40(5):539–547. doi: 10.1016/s0042-6989(99)00197-2. [DOI] [PubMed] [Google Scholar]
  143. Lewis R. F., Zee D. S. Abnormal spatial localization with trigeminal-oculomotor synkinesis. Evidence for a proprioceptive effect. Brain. 1993 Oct;116(Pt 5):1105–1118. doi: 10.1093/brain/116.5.1105. [DOI] [PubMed] [Google Scholar]
  144. Lewis R. F., Zee D. S., Gaymard B. M., Guthrie B. L. Extraocular muscle proprioception functions in the control of ocular alignment and eye movement conjugacy. J Neurophysiol. 1994 Aug;72(2):1028–1031. doi: 10.1152/jn.1994.72.2.1028. [DOI] [PubMed] [Google Scholar]
  145. Lewis R. F., Zee D. S., Goldstein H. P., Guthrie B. L. Proprioceptive and retinal afference modify postsaccadic ocular drift. J Neurophysiol. 1999 Aug;82(2):551–563. doi: 10.1152/jn.1999.82.2.551. [DOI] [PubMed] [Google Scholar]
  146. Li W., Matin L. Change in visually perceived eye level without change in perceived pitch. Perception. 1998;27(5):553–572. doi: 10.1068/p270553. [DOI] [PubMed] [Google Scholar]
  147. Li W., Matin L. Visual direction is corrected by a hybrid extraretinal eye position signal. Ann N Y Acad Sci. 1992 May 22;656:865–867. doi: 10.1111/j.1749-6632.1992.tb25277.x. [DOI] [PubMed] [Google Scholar]
  148. Lopez-Barneo J., Darlot C., Berthoz A., Baker R. Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J Neurophysiol. 1982 Feb;47(2):329–352. doi: 10.1152/jn.1982.47.2.329. [DOI] [PubMed] [Google Scholar]
  149. Lukas J. R., Aigner M., Blumer R., Heinzl H., Mayr R. Number and distribution of neuromuscular spindles in human extraocular muscles. Invest Ophthalmol Vis Sci. 1994 Dec;35(13):4317–4327. [PubMed] [Google Scholar]
  150. Lukas J. R., Blumer R., Aigner M., Denk M., Mayr R. Effects of eye muscle proprioceptive activation: morphological particularities of human extraocular muscle spindles. Graefes Arch Clin Exp Ophthalmol. 1998 Mar;236(3):238–239. [PubMed] [Google Scholar]
  151. Lukas J. R., Blumer R., Denk M., Baumgartner I., Neuhuber W., Mayr R. Innervated myotendinous cylinders in human extraocular muscles. Invest Ophthalmol Vis Sci. 2000 Aug;41(9):2422–2431. [PubMed] [Google Scholar]
  152. Maekawa K., Kimura M. Mossy fiber projections to the cerebellar flocculus from the extraocular muscle afferents. Brain Res. 1980 Jun 9;191(2):313–325. doi: 10.1016/0006-8993(80)91283-4. [DOI] [PubMed] [Google Scholar]
  153. Maffei L., Bisti S. Binocular interaction in strabismic kittens deprived of Vision. Science. 1976 Feb 13;191(4227):579–580. doi: 10.1126/science.1251195. [DOI] [PubMed] [Google Scholar]
  154. Maffei L., Fiorentini A. Asymmetry of motility of the eyes and change of binocular properties of cortical cells in adult cats. Brain Res. 1976 Mar 19;105(1):73–78. doi: 10.1016/0006-8993(76)90923-9. [DOI] [PubMed] [Google Scholar]
  155. Maier A., De Santis M., Eldred E. Absence of muscle spindles in avian extraocular muscles. Exp Eye Res. 1971 Nov;12(3):251–253. doi: 10.1016/0014-4835(71)90145-x. [DOI] [PubMed] [Google Scholar]
  156. Maier A., DeSantis M., Eldred E. The occurrence of muscle spindles in extraocular muscles of various vertebrates. J Morphol. 1974 Aug;143(4):397–408. doi: 10.1002/jmor.1051430404. [DOI] [PubMed] [Google Scholar]
  157. Manni E., Bagolini B., Pettorossi V. E., Errico P. Effect of botulinum toxin on extraocular muscle proprioception. Doc Ophthalmol. 1989 Jun;72(2):189–198. doi: 10.1007/BF00156709. [DOI] [PubMed] [Google Scholar]
  158. Manni E., Bortolami R., Desole C. Eye muscle proprioception and the semilunar ganglion. Exp Neurol. 1966 Oct;16(2):226–236. doi: 10.1016/0014-4886(66)90101-4. [DOI] [PubMed] [Google Scholar]
  159. Manni E., Draicchio F., Pettorossi V. E., Carobi C., Grassi S., Bortolami R., Lucchi M. L. On the nature of the afferent fibers of oculomotor nerve. Arch Ital Biol. 1989 Mar;127(2):99–108. [PubMed] [Google Scholar]
  160. Manni E., Pettorossi V. E. Somatotopic localization of the eye muscle afferents in the semilunar ganglion. Arch Ital Biol. 1976 Jun;114(2):178–187. [PubMed] [Google Scholar]
  161. Martin L. A possible hybrid mechanism for modification of visual direction associated with eye movements - the paralyzed-eye experiment reconsidered. Perception. 1976;5(2):233–239. doi: 10.1068/p050233. [DOI] [PubMed] [Google Scholar]
  162. Matin L., Li W. Multimodal basis for egocentric spatial localization and orientation. J Vestib Res. 1995 Nov-Dec;5(6):499–518. [PubMed] [Google Scholar]
  163. Matthews B. H. The response of a muscle spindle during active contraction of a muscle. J Physiol. 1931 Jun 26;72(2):153–174. doi: 10.1113/jphysiol.1931.sp002768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Matthews P. B. Proprioceptors and their contribution to somatosensory mapping: complex messages require complex processing. Can J Physiol Pharmacol. 1988 Apr;66(4):430–438. doi: 10.1139/y88-073. [DOI] [PubMed] [Google Scholar]
  165. Matthews P. B., Simmonds A. Sensations of finger movement elicited by pulling upon flexor tendons in man. J Physiol. 1974 May;239(1):27P–28P. [PubMed] [Google Scholar]
  166. Matthews P. B. Where does Sherrington's "muscular sense" originate? Muscles, joints, corollary discharges? Annu Rev Neurosci. 1982;5:189–218. doi: 10.1146/annurev.ne.05.030182.001201. [DOI] [PubMed] [Google Scholar]
  167. McCrea R. A., Baker R. Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol. 1985 Jul 15;237(3):377–407. doi: 10.1002/cne.902370308. [DOI] [PubMed] [Google Scholar]
  168. Merton P. A. Human position sense and sense of effort. Symp Soc Exp Biol. 1964;18:387–400. [PubMed] [Google Scholar]
  169. Miller J. M., Demer J. L., Rosenbaum A. L. Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging. Ophthalmology. 1993 Apr;100(4):475–487. doi: 10.1016/s0161-6420(93)31618-0. [DOI] [PubMed] [Google Scholar]
  170. Milleret C., Gary-Bobo E., Buisseret P. Réponses des neurones du cortex visuel (Aire 18) aux stimulations proprioceptives extraoculaires: évolution chez le chat normal ou élevé à l'obscurité et interactions avec l'activité visuelle. C R Acad Sci III. 1987;305(13):531–536. [PubMed] [Google Scholar]
  171. Miyashita Y. Eye velocity responsiveness and its proprioceptive component in the floccular Purkinje cells of the alert pigmented rabbit. Exp Brain Res. 1984;55(1):81–90. doi: 10.1007/BF00240500. [DOI] [PubMed] [Google Scholar]
  172. Moidell B., Steinbach M. J., Ono H. Egocenter location in children enucleated at an early age. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1348–1351. [PubMed] [Google Scholar]
  173. Molotchnikoff S., Casanova C. Reactions of the geniculate cells to extraocular proprioceptive activation in rabbits. J Neurosci Res. 1985;14(1):105–115. doi: 10.1002/jnr.490140110. [DOI] [PubMed] [Google Scholar]
  174. Montgomery J. C., Macdonald J. A. Stretch receptors in the keye muscles of a teleost fish. Experientia. 1980 Oct 15;36(10):1176–1177. doi: 10.1007/BF01976111. [DOI] [PubMed] [Google Scholar]
  175. Nagao S. Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Exp Brain Res. 1988;73(3):489–497. doi: 10.1007/BF00406606. [DOI] [PubMed] [Google Scholar]
  176. Nagao S. Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res. 1989;77(3):531–540. doi: 10.1007/BF00249606. [DOI] [PubMed] [Google Scholar]
  177. Nelson J. S., Meredith M. A., Stein B. E. Does an extraocular proprioceptive signal reach the superior colliculus? J Neurophysiol. 1989 Dec;62(6):1360–1374. doi: 10.1152/jn.1989.62.6.1360. [DOI] [PubMed] [Google Scholar]
  178. Ogasawara K., Onodera S., Shiwa T., Ninomiya S., Tazawa Y. Projections of extraocular muscle primary afferent neurons to the trigeminal sensory complex in the cat as studied with the transganglionic transport of horseradish peroxidase. Neurosci Lett. 1987 Jan 27;73(3):242–246. doi: 10.1016/0304-3940(87)90252-7. [DOI] [PubMed] [Google Scholar]
  179. Optican L. M., Robinson D. A. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980 Dec;44(6):1058–1076. doi: 10.1152/jn.1980.44.6.1058. [DOI] [PubMed] [Google Scholar]
  180. Optican L. M., Zee D. S., Chu F. C. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements. J Neurophysiol. 1985 Jul;54(1):110–122. doi: 10.1152/jn.1985.54.1.110. [DOI] [PubMed] [Google Scholar]
  181. Peterson B. W., Bilotto G., Goldberg J., Wilson V. J. Dynamics of vestibulo-ocular, vestibulocollic, and cervicocollic reflexes. Ann N Y Acad Sci. 1981;374:395–402. doi: 10.1111/j.1749-6632.1981.tb30885.x. [DOI] [PubMed] [Google Scholar]
  182. Porter J. D., Baker R. S., Ragusa R. J., Brueckner J. K. Extraocular muscles: basic and clinical aspects of structure and function. Surv Ophthalmol. 1995 May-Jun;39(6):451–484. doi: 10.1016/s0039-6257(05)80055-4. [DOI] [PubMed] [Google Scholar]
  183. Porter J. D. Brainstem terminations of extraocular muscle primary afferent neurons in the monkey. J Comp Neurol. 1986 May 8;247(2):133–143. doi: 10.1002/cne.902470202. [DOI] [PubMed] [Google Scholar]
  184. Porter J. D., Donaldson I. M. The anatomical substrate for cat extraocular muscle proprioception. Neuroscience. 1991;43(2-3):473–481. doi: 10.1016/0306-4522(91)90309-c. [DOI] [PubMed] [Google Scholar]
  185. Porter J. D., Guthrie B. L., Sparks D. L. Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J Comp Neurol. 1983 Aug 1;218(2):208–219. doi: 10.1002/cne.902180208. [DOI] [PubMed] [Google Scholar]
  186. Porter J. D., Spencer R. F. Localization of morphology of cat extraocular muscle afferent neurones identified by retrograde transport of horseradish peroxidase. J Comp Neurol. 1982 Jan 1;204(1):56–64. doi: 10.1002/cne.902040107. [DOI] [PubMed] [Google Scholar]
  187. Proske U., Wise A. K., Gregory J. E. The role of muscle receptors in the detection of movements. Prog Neurobiol. 2000 Jan;60(1):85–96. doi: 10.1016/s0301-0082(99)00022-2. [DOI] [PubMed] [Google Scholar]
  188. Quaia C., Optican L. M. Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys. J Neurophysiol. 1998 Jun;79(6):3197–3215. doi: 10.1152/jn.1998.79.6.3197. [DOI] [PubMed] [Google Scholar]
  189. Rahn A. C., Zuber B. L. Cerebellar evoked potentials resulting from extraocular muscle stretch: evidence against a cerebellar origin. Exp Neurol. 1971 May;31(2):230–238. doi: 10.1016/0014-4886(71)90192-0. [DOI] [PubMed] [Google Scholar]
  190. Richmond F. J., Abrahams V. C. Morphology and distribution of muscle spindles in dorsal muscles of the cat neck. J Neurophysiol. 1975 Nov;38(6):1322–1339. doi: 10.1152/jn.1975.38.6.1322. [DOI] [PubMed] [Google Scholar]
  191. Richmond F. J., Johnston W. S., Baker R. S., Steinbach M. J. Palisade endings in human extraocular muscles. Invest Ophthalmol Vis Sci. 1984 Apr;25(4):471–476. [PubMed] [Google Scholar]
  192. Rine R. M., Skavenski A. A. Extraretinal eye position signals determine perceived target location when they conflict with visual cues. Vision Res. 1997 Mar;37(6):775–787. doi: 10.1016/s0042-6989(96)00216-7. [DOI] [PubMed] [Google Scholar]
  193. Roll R., Velay J. L., Roll J. P. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp Brain Res. 1991;85(2):423–431. doi: 10.1007/BF00229419. [DOI] [PubMed] [Google Scholar]
  194. Ron S., Berthoz A. Eye and head coupled and dissociated movements during orientation to a double step visual target displacement. Exp Brain Res. 1991;85(1):196–207. doi: 10.1007/BF00230001. [DOI] [PubMed] [Google Scholar]
  195. Ruskell G. L. Extraocular muscle proprioceptors and proprioception. Prog Retin Eye Res. 1999 May;18(3):269–291. doi: 10.1016/s1350-9462(98)00029-9. [DOI] [PubMed] [Google Scholar]
  196. Ruskell G. L. Golgi tendon organs in the proximal tendon of sheep extraocular muscles. Anat Rec. 1990 May;227(1):25–31. doi: 10.1002/ar.1092270104. [DOI] [PubMed] [Google Scholar]
  197. Ruskell G. L. Spiral nerve endings in human extraocular muscles terminate in motor end plates. J Anat. 1984 Aug;139(Pt 1):33–43. [PMC free article] [PubMed] [Google Scholar]
  198. Ruskell G. L. The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. J Anat. 1989 Dec;167:199–214. [PMC free article] [PubMed] [Google Scholar]
  199. Ruskell G. L. The fine structure of innervated myotendinous cylinders in extraocular muscles of rhesus monkeys. J Neurocytol. 1978 Dec;7(6):693–708. doi: 10.1007/BF01205145. [DOI] [PubMed] [Google Scholar]
  200. SPERRY R. W. Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol. 1950 Dec;43(6):482–489. doi: 10.1037/h0055479. [DOI] [PubMed] [Google Scholar]
  201. Schlag J., Lehtinen I., Schlag-Rey M. Neuronal activity before and during eye movements in thalamic internal medullary lamina of the cat. J Neurophysiol. 1974 Sep;37(5):982–995. doi: 10.1152/jn.1974.37.5.982. [DOI] [PubMed] [Google Scholar]
  202. Schlag J., Lehtinen I., Schlag-Rey M. Neuronal activity correlated with eye movements in "nonspecific" thalamic nuclei. Brain Res. 1973 Nov 9;62(1):268–272. doi: 10.1016/0006-8993(73)90640-9. [DOI] [PubMed] [Google Scholar]
  203. Schwarz D. W., Tomlinson R. D. Neuronal responses to eye muscle stretch in cerebellar lobule VI of the cat. Exp Brain Res. 1977 Jan 18;27(1):101–111. doi: 10.1007/BF00234828. [DOI] [PubMed] [Google Scholar]
  204. Skavenski A. A. Extraretinal correction and memory for target position. Vision Res. 1971 Jul;11(7):743–746. doi: 10.1016/0042-6989(71)90104-0. [DOI] [PubMed] [Google Scholar]
  205. Skavenski A. A. Inflow as a source of extraretinal eye position information. Vision Res. 1972 Feb;12(2):221–229. doi: 10.1016/0042-6989(72)90113-7. [DOI] [PubMed] [Google Scholar]
  206. Skavenski A. A., Steinman R. M. Contr of eye position in the dark. Vision Res. 1970 Feb;10(2):193–203. doi: 10.1016/0042-6989(70)90115-x. [DOI] [PubMed] [Google Scholar]
  207. Spencer R. F., Porter J. D. Structural organization of the extraocular muscles. Rev Oculomot Res. 1988;2:33–79. [PubMed] [Google Scholar]
  208. Steinbach M. J., Kirshner E. L., Arstikaitis M. J. Recession vs marginal myotomy surgery for strabismus: effects on spatial localization. Invest Ophthalmol Vis Sci. 1987 Nov;28(11):1870–1872. [PubMed] [Google Scholar]
  209. Steinbach M. J. Proprioceptive knowledge of eye position. Vision Res. 1987;27(10):1737–1744. doi: 10.1016/0042-6989(87)90103-9. [DOI] [PubMed] [Google Scholar]
  210. Steinbach M. J., Smith D. R. Spatial localization after strabismus surgery: evidence for inflow. Science. 1981 Sep 18;213(4514):1407–1409. doi: 10.1126/science.7268444. [DOI] [PubMed] [Google Scholar]
  211. Stevens J. K., Emerson R. C., Gerstein G. L., Kallos T., Neufeld G. R., Nichols C. W., Rosenquist A. C. Paralysis of the awake human: visual perceptions. Vision Res. 1976 Jan;16(1):93–98. doi: 10.1016/0042-6989(76)90082-1. [DOI] [PubMed] [Google Scholar]
  212. Tomlinson R. D., Schwarz D. W. Response of oculomotor neurons to eye muscle stretch. Can J Physiol Pharmacol. 1977 Jun;55(3):568–573. doi: 10.1139/y77-079. [DOI] [PubMed] [Google Scholar]
  213. Toyama K., Kozasa T. Responses of Clare-Bishop neurones to three dimensional movement of a light stimulus. Vision Res. 1982;22(5):571–574. doi: 10.1016/0042-6989(82)90115-8. [DOI] [PubMed] [Google Scholar]
  214. Van Gisbergen J. A., Van Opstal A. J. The neurobiology of saccadic eye movements. Models. Rev Oculomot Res. 1989;3:69–101. [PubMed] [Google Scholar]
  215. Velay J. L., Allin F., Bouquerel A. Motor and perceptual responses to horizontal and vertical eye vibration in humans. Vision Res. 1997 Sep;37(18):2631–2638. doi: 10.1016/s0042-6989(96)00280-5. [DOI] [PubMed] [Google Scholar]
  216. Velay J. L., Roll R., Lennerstrand G., Roll J. P. Eye proprioception and visual localization in humans: influence of ocular dominance and visual context. Vision Res. 1994 Aug;34(16):2169–2176. doi: 10.1016/0042-6989(94)90325-5. [DOI] [PubMed] [Google Scholar]
  217. Ventre-Dominey J., Dominey P. F., Sindou M. Extraocular proprioception is required for spatial localization in man. Neuroreport. 1996 Jun 17;7(9):1531–1535. doi: 10.1097/00001756-199606170-00019. [DOI] [PubMed] [Google Scholar]
  218. WHITTERIDGE D. A separate afferent nerve supply from the extra-ocular muscles of goats. Q J Exp Physiol Cogn Med Sci. 1955 Oct;40(4):331–336. doi: 10.1113/expphysiol.1955.sp001133. [DOI] [PubMed] [Google Scholar]
  219. WHITTERIDGE D. The effect of stimulation of intrafusal muscle fibres on sensitivity to stretch of extraocular muscle spindles. Q J Exp Physiol Cogn Med Sci. 1959 Oct;44:385–393. doi: 10.1113/expphysiol.1959.sp001420. [DOI] [PubMed] [Google Scholar]
  220. Wolfe J. W. Research note. Cerebellar evoked potentials related to extraocular muscle stretch. Exp Neurol. 1971 Dec;33(3):693–697. doi: 10.1016/0014-4886(71)90137-3. [DOI] [PubMed] [Google Scholar]
  221. Yamamoto T., Morgan D. L., Gregory J. E., Proske U. Blockade of intrafusal neuromuscular junctions of cat muscle spindles with gallamine. Exp Physiol. 1994 May;79(3):365–376. doi: 10.1113/expphysiol.1994.sp003771. [DOI] [PubMed] [Google Scholar]
  222. Zee D. S., Yamazaki A., Butler P. H., Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981 Oct;46(4):878–899. doi: 10.1152/jn.1981.46.4.878. [DOI] [PubMed] [Google Scholar]
  223. du Lac S., Raymond J. L., Sejnowski T. J., Lisberger S. G. Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci. 1995;18:409–441. doi: 10.1146/annurev.ne.18.030195.002205. [DOI] [PubMed] [Google Scholar]
  224. van Donkelaar P., Gauthier G. M., Blouin J., Vercher J. L. The role of ocular muscle proprioception during modifications in smooth pursuit output. Vision Res. 1997 Mar;37(6):769–774. doi: 10.1016/s0042-6989(96)00239-8. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES