Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Dec 29;355(1404):1755–1769. doi: 10.1098/rstb.2000.0733

Motor learning through the combination of primitives.

F A Mussa-Ivaldi 1, E Bizzi 1
PMCID: PMC1692905  PMID: 11205339

Abstract

In this paper we discuss a new perspective on how the central nervous system (CNS) represents and solves some of the most fundamental computational problems of motor control. In particular, we consider the task of transforming a planned limb movement into an adequate set of motor commands. To carry out this task the CNS must solve a complex inverse dynamic problem. This problem involves the transformation from a desired motion to the forces that are needed to drive the limb. The inverse dynamic problem is a hard computational challenge because of the need to coordinate multiple limb segments and because of the continuous changes in the mechanical properties of the limbs and of the environment with which they come in contact. A number of studies of motor learning have provided support for the idea that the CNS creates, updates and exploits internal representations of limb dynamics in order to deal with the complexity of inverse dynamics. Here we discuss how such internal representations are likely to be built by combining the modular primitives in the spinal cord as well as other building blocks found in higher brain structures. Experimental studies on spinalized frogs and rats have led to the conclusion that the premotor circuits within the spinal cord are organized into a set of discrete modules. Each module, when activated, induces a specific force field and the simultaneous activation of multiple modules leads to the vectorial combination of the corresponding fields. We regard these force fields as computational primitives that are used by the CNS for generating a rich grammar of motor behaviours.

Full Text

The Full Text of this article is available as a PDF (626.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastian A. J., Martin T. A., Keating J. G., Thach W. T. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996 Jul;76(1):492–509. doi: 10.1152/jn.1996.76.1.492. [DOI] [PubMed] [Google Scholar]
  2. Bizzi E., Accornero N., Chapple W., Hogan N. Posture control and trajectory formation during arm movement. J Neurosci. 1984 Nov;4(11):2738–2744. doi: 10.1523/JNEUROSCI.04-11-02738.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bizzi E., Mussa-Ivaldi F. A., Giszter S. Computations underlying the execution of movement: a biological perspective. Science. 1991 Jul 19;253(5017):287–291. doi: 10.1126/science.1857964. [DOI] [PubMed] [Google Scholar]
  4. Brashers-Krug T., Shadmehr R., Bizzi E. Consolidation in human motor memory. Nature. 1996 Jul 18;382(6588):252–255. doi: 10.1038/382252a0. [DOI] [PubMed] [Google Scholar]
  5. Flanagan J. R., Wing A. M. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997 Feb 15;17(4):1519–1528. doi: 10.1523/JNEUROSCI.17-04-01519.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flash T. The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern. 1987;57(4-5):257–274. doi: 10.1007/BF00338819. [DOI] [PubMed] [Google Scholar]
  7. Ghahramani Z., Wolpert D. M., Jordan M. I. Generalization to local remappings of the visuomotor coordinate transformation. J Neurosci. 1996 Nov 1;16(21):7085–7096. doi: 10.1523/JNEUROSCI.16-21-07085.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giszter S. F., Mussa-Ivaldi F. A., Bizzi E. Convergent force fields organized in the frog's spinal cord. J Neurosci. 1993 Feb;13(2):467–491. doi: 10.1523/JNEUROSCI.13-02-00467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gomi H., Kawato M. Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern. 1997 Mar;76(3):163–171. doi: 10.1007/s004220050329. [DOI] [PubMed] [Google Scholar]
  10. Gottlieb G. L. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. J Neurophysiol. 1996 Nov;76(5):3207–3229. doi: 10.1152/jn.1996.76.5.3207. [DOI] [PubMed] [Google Scholar]
  11. Hogan N., Bizzi E., Mussa-Ivaldi F. A., Flash T. Controlling multijoint motor behavior. Exerc Sport Sci Rev. 1987;15:153–190. [PubMed] [Google Scholar]
  12. Hogan N. The mechanics of multi-joint posture and movement control. Biol Cybern. 1985;52(5):315–331. doi: 10.1007/BF00355754. [DOI] [PubMed] [Google Scholar]
  13. Hollerbach M. J., Flash T. Dynamic interactions between limb segments during planar arm movement. Biol Cybern. 1982;44(1):67–77. doi: 10.1007/BF00353957. [DOI] [PubMed] [Google Scholar]
  14. Kargo W. J., Giszter S. F. Rapid correction of aimed movements by summation of force-field primitives. J Neurosci. 2000 Jan 1;20(1):409–426. doi: 10.1523/JNEUROSCI.20-01-00409.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katayama M., Kawato M. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern. 1993;69(5-6):353–362. [PubMed] [Google Scholar]
  16. Kawato M., Wolpert D. Internal models for motor control. Novartis Found Symp. 1998;218:291–307. doi: 10.1002/9780470515563.ch16. [DOI] [PubMed] [Google Scholar]
  17. Lackner J. R., Dizio P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol. 1994 Jul;72(1):299–313. doi: 10.1152/jn.1994.72.1.299. [DOI] [PubMed] [Google Scholar]
  18. Marr D. A theory of cerebellar cortex. J Physiol. 1969 Jun;202(2):437–470. doi: 10.1113/jphysiol.1969.sp008820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin T. A., Keating J. G., Goodkin H. P., Bastian A. J., Thach W. T. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996 Aug;119(Pt 4):1199–1211. doi: 10.1093/brain/119.4.1199. [DOI] [PubMed] [Google Scholar]
  20. McIntyre J., Berthoz A., Lacquaniti F. Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments? Brain Res Brain Res Rev. 1998 Nov;28(1-2):143–154. doi: 10.1016/s0165-0173(98)00034-4. [DOI] [PubMed] [Google Scholar]
  21. Merton P. A. How we control the contraction of our muscles. Sci Am. 1972 May;226(5):30–37. doi: 10.1038/scientificamerican0572-30. [DOI] [PubMed] [Google Scholar]
  22. Morasso P. Spatial control of arm movements. Exp Brain Res. 1981;42(2):223–227. doi: 10.1007/BF00236911. [DOI] [PubMed] [Google Scholar]
  23. Mountcastle V. B., Lynch J. C., Georgopoulos A., Sakata H., Acuna C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol. 1975 Jul;38(4):871–908. doi: 10.1152/jn.1975.38.4.871. [DOI] [PubMed] [Google Scholar]
  24. Mussa-Ivaldi F. A., Giszter S. F., Bizzi E. Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7534–7538. doi: 10.1073/pnas.91.16.7534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mussa-Ivaldi F. A., Giszter S. F., Bizzi E. Motor-space coding in the central nervous system. Cold Spring Harb Symp Quant Biol. 1990;55:827–835. doi: 10.1101/sqb.1990.055.01.078. [DOI] [PubMed] [Google Scholar]
  26. Mussa-Ivaldi F. A., Giszter S. F. Vector field approximation: a computational paradigm for motor control and learning. Biol Cybern. 1992;67(6):491–500. doi: 10.1007/BF00198756. [DOI] [PubMed] [Google Scholar]
  27. Mussa-Ivaldi F. A., Hogan N., Bizzi E. Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci. 1985 Oct;5(10):2732–2743. doi: 10.1523/JNEUROSCI.05-10-02732.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science. 1990 Feb 23;247(4945):978–982. doi: 10.1126/science.247.4945.978. [DOI] [PubMed] [Google Scholar]
  29. Polit A., Bizzi E. Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol. 1979 Jan;42(1 Pt 1):183–194. doi: 10.1152/jn.1979.42.1.183. [DOI] [PubMed] [Google Scholar]
  30. Raibert M. H. A model for sensorimotor control and learning. Biol Cybern. 1978 Apr 20;29(1):29–36. doi: 10.1007/BF00365233. [DOI] [PubMed] [Google Scholar]
  31. Rizzolatti G., Gentilucci M., Camarda R. M., Gallese V., Luppino G., Matelli M., Fogassi L. Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a beta). Exp Brain Res. 1990;82(2):337–350. doi: 10.1007/BF00231253. [DOI] [PubMed] [Google Scholar]
  32. Sabes P. N., Jordan M. I., Wolpert D. M. The role of inertial sensitivity in motor planning. J Neurosci. 1998 Aug 1;18(15):5948–5957. doi: 10.1523/JNEUROSCI.18-15-05948.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sainburg R. L., Poizner H., Ghez C. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993 Nov;70(5):2136–2147. doi: 10.1152/jn.1993.70.5.2136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sakata H., Taira M., Murata A., Mine S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex. 1995 Sep-Oct;5(5):429–438. doi: 10.1093/cercor/5.5.429. [DOI] [PubMed] [Google Scholar]
  35. Saltiel P., Tresch M. C., Bizzi E. Spinal cord modular organization and rhythm generation: an NMDA iontophoretic study in the frog. J Neurophysiol. 1998 Nov;80(5):2323–2339. doi: 10.1152/jn.1998.80.5.2323. [DOI] [PubMed] [Google Scholar]
  36. Schaal S, Atkeson CG. Constructive incremental learning from only local information . Neural Comput. 1998 Nov 15;10(8):2047–2084. doi: 10.1162/089976698300016963. [DOI] [PubMed] [Google Scholar]
  37. Schwartz A. B., Kettner R. E., Georgopoulos A. P. Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci. 1988 Aug;8(8):2913–2927. doi: 10.1523/JNEUROSCI.08-08-02913.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shadmehr R., Holcomb H. H. Neural correlates of motor memory consolidation. Science. 1997 Aug 8;277(5327):821–825. doi: 10.1126/science.277.5327.821. [DOI] [PubMed] [Google Scholar]
  39. Shadmehr R., Mussa-Ivaldi F. A. Adaptive representation of dynamics during learning of a motor task. J Neurosci. 1994 May;14(5 Pt 2):3208–3224. doi: 10.1523/JNEUROSCI.14-05-03208.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shadmehr R., Mussa-Ivaldi F. A., Bizzi E. Postural force fields of the human arm and their role in generating multijoint movements. J Neurosci. 1993 Jan;13(1):45–62. doi: 10.1523/JNEUROSCI.13-01-00045.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sherrington C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol. 1910 Apr 26;40(1-2):28–121. doi: 10.1113/jphysiol.1910.sp001362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Toni I., Krams M., Turner R., Passingham R. E. The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage. 1998 Jul;8(1):50–61. doi: 10.1006/nimg.1998.0349. [DOI] [PubMed] [Google Scholar]
  43. Tresch M. C., Bizzi E. Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation. Exp Brain Res. 1999 Dec;129(3):401–416. doi: 10.1007/s002210050908. [DOI] [PubMed] [Google Scholar]
  44. Vallbo A. B. Slowly adapting muscle receptors in man. Acta Physiol Scand. 1970 Mar;78(3):315–333. doi: 10.1111/j.1748-1716.1970.tb04667.x. [DOI] [PubMed] [Google Scholar]
  45. Vetter P., Goodbody S. J., Wolpert D. M. Evidence for an eye-centered spherical representation of the visuomotor map. J Neurophysiol. 1999 Feb;81(2):935–939. doi: 10.1152/jn.1999.81.2.935. [DOI] [PubMed] [Google Scholar]
  46. Wolpert D. M., Miall R. C. Forward Models for Physiological Motor Control. Neural Netw. 1996 Nov;9(8):1265–1279. doi: 10.1016/s0893-6080(96)00035-4. [DOI] [PubMed] [Google Scholar]
  47. Won J., Hogan N. Stability properties of human reaching movements. Exp Brain Res. 1995;107(1):125–136. doi: 10.1007/BF00228024. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES