Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2000 Dec 29;355(1404):1813–1829. doi: 10.1098/rstb.2000.0737

The Croonian Lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission.

N Unwin 1
PMCID: PMC1692909  PMID: 11205343

Abstract

Communication in the nervous system takes place at chemical and electrical synapses, where neurotransmitter-gated ion channels, such as the nicotinic acetylcholine (ACh) receptor, and gap junction channels control propagation of electrical signals from one cell to the next. Newly developed electron crystallographic methods have revealed the structures of these channels trapped in open as well as closed states, suggesting how they work. The ACh receptor has large vestibules extending from the membrane which shape the ACh-binding pockets and facilitate selective transport of cations across a narrow membrane-spanning pore. When ACh enters the pockets it triggers a concerted conformational change that opens the pore by destabilizing a gate in the middle of the membrane made by a ring of pore-lining alpha-helical segmets. The alternative 'open' configuration of pore-lining segments reshapes the lumen and creates new surfaces, allowing the ions to pass through. The gap junction channel uses a similar structural mechanism, involving coordinated rearrangements of alpha-helical segments in the plane of the membrane, to open its pore.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).


Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES