Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jan 29;357(1417):81–88. doi: 10.1098/rstb.2001.1017

Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii.

L David Sibley 1, Dana G Mordue 1, Chunlei Su 1, Paul M Robben 1, Dan K Howe 1
PMCID: PMC1692920  PMID: 11839185

Abstract

Toxoplasma gondii is a common protozoan parasite that causes disease in immunocompromised humans. Equipped with a wide array of experimental tools, T. gondii has rapidly developed as a model parasite for genetic studies. The population structure of T. gondii is highly clonal, consisting of three distinct lineages that differ dramatically in virulence. Acute virulence is probably mediated by the genetic differences that distinguish strain types. We have utilized a combination of genetic approaches to investigate the acute virulence of toxoplasmosis using the mouse model. These studies reveal the surprising finding that pathogenicity is due to the over-stimulation of normally protective immune responses. Classical genetic linkage mapping studies indicate that genes that mediate acute virulence are linked to chromosome VII in the parasite. To increase the resolution of genetic mapping studies, single-nucleotide polymorphisms are being developed based on an extensive database of expressed sequence tags (ESTs) from T. gondii. Separately, DNA microarray studies are being used to examine the expression of parasite and host genes during infection. Collectively, these approaches should improve current understanding of virulence and pathogenicity in toxoplasmosis.

Full Text

The Full Text of this article is available as a PDF (158.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Kelley J. M., Gocayne J. D., Dubnick M., Polymeropoulos M. H., Xiao H., Merril C. R., Wu A., Olde B., Moreno R. F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991 Jun 21;252(5013):1651–1656. doi: 10.1126/science.2047873. [DOI] [PubMed] [Google Scholar]
  2. Ajioka J. W., Boothroyd J. C., Brunk B. P., Hehl A., Hillier L., Manger I. D., Marra M., Overton G. C., Roos D. S., Wan K. L. Gene discovery by EST sequencing in Toxoplasma gondii reveals sequences restricted to the Apicomplexa. Genome Res. 1998 Jan;8(1):18–28. doi: 10.1101/gr.8.1.18. [DOI] [PubMed] [Google Scholar]
  3. Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol. 2000 Feb;12(1):59–63. doi: 10.1016/s0952-7915(99)00051-5. [DOI] [PubMed] [Google Scholar]
  4. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999 May 28;284(5419):1520–1523. doi: 10.1126/science.284.5419.1520. [DOI] [PubMed] [Google Scholar]
  5. Cai G., Kastelein R., Hunter C. A. Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii. Infect Immun. 2000 Dec;68(12):6932–6938. doi: 10.1128/iai.68.12.6932-6938.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carson W. E., Dierksheide J. E., Jabbour S., Anghelina M., Bouchard P., Ku G., Yu H., Baumann H., Shah M. H., Cooper M. A. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction. Blood. 2000 Aug 15;96(4):1465–1473. [PubMed] [Google Scholar]
  7. Chakrabarti D., Reddy G. R., Dame J. B., Almira E. C., Laipis P. J., Ferl R. J., Yang T. P., Rowe T. C., Schuster S. M. Analysis of expressed sequence tags from Plasmodium falciparum. Mol Biochem Parasitol. 1994 Jul;66(1):97–104. doi: 10.1016/0166-6851(94)90039-6. [DOI] [PubMed] [Google Scholar]
  8. Cummings C. A., Relman D. A. Using DNA microarrays to study host-microbe interactions. Emerg Infect Dis. 2000 Sep-Oct;6(5):513–525. doi: 10.3201/eid0605.000511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dardé M. L., Bouteille B., Pestre-Alexandre M. Isoenzyme analysis of 35 Toxoplasma gondii isolates and the biological and epidemiological implications. J Parasitol. 1992 Oct;78(5):786–794. [PubMed] [Google Scholar]
  10. DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997 Oct 24;278(5338):680–686. doi: 10.1126/science.278.5338.680. [DOI] [PubMed] [Google Scholar]
  11. Denkers E. Y., Gazzinelli R. T. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev. 1998 Oct;11(4):569–588. doi: 10.1128/cmr.11.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dinarello C. A. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999 Jan;103(1 Pt 1):11–24. doi: 10.1016/s0091-6749(99)70518-x. [DOI] [PubMed] [Google Scholar]
  13. Dobrowolski J. M., Sibley L. D. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996 Mar 22;84(6):933–939. doi: 10.1016/s0092-8674(00)81071-5. [DOI] [PubMed] [Google Scholar]
  14. Dubey J. P. Mouse pathogenicity of Toxoplasma gondii isolated from a goat. Am J Vet Res. 1980 Mar;41(3):427–429. [PubMed] [Google Scholar]
  15. Fuentes I., Rubio J. M., Ramírez C., Alvar J. Genotypic characterization of Toxoplasma gondii strains associated with human toxoplasmosis in Spain: direct analysis from clinical samples. J Clin Microbiol. 2001 Apr;39(4):1566–1570. doi: 10.1128/JCM.39.4.1566-1570.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gazzinelli R. T., Wysocka M., Hieny S., Scharton-Kersten T., Cheever A., Kühn R., Müller W., Trinchieri G., Sher A. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol. 1996 Jul 15;157(2):798–805. [PubMed] [Google Scholar]
  17. Gilbert R. E., Dunn D. T., Lightman S., Murray P. I., Pavesio C. E., Gormley P. D., Masters J., Parker S. P., Stanford M. R. Incidence of symptomatic toxoplasma eye disease: aetiology and public health implications. Epidemiol Infect. 1999 Oct;123(2):283–289. doi: 10.1017/s0950268899002800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grigg M. E., Boothroyd J. C. Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol. 2001 Jan;39(1):398–400. doi: 10.1128/JCM.39.1.398-400.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Howe D. K., Sibley L. D. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis. 1995 Dec;172(6):1561–1566. doi: 10.1093/infdis/172.6.1561. [DOI] [PubMed] [Google Scholar]
  20. Howe D. K., Summers B. C., Sibley L. D. Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii. Infect Immun. 1996 Dec;64(12):5193–5198. doi: 10.1128/iai.64.12.5193-5198.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunter C. A., Suzuki Y., Subauste C. S., Remington J. S. Cells and cytokines in resistance to Toxoplasma gondii. Curr Top Microbiol Immunol. 1996;219:113–125. doi: 10.1007/978-3-642-51014-4_11. [DOI] [PubMed] [Google Scholar]
  22. Jaeschke H., Fisher M. A., Lawson J. A., Simmons C. A., Farhood A., Jones D. A. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol. 1998 Apr 1;160(7):3480–3486. [PubMed] [Google Scholar]
  23. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liesenfeld O., Kang H., Park D., Nguyen T. A., Parkhe C. V., Watanabe H., Abo T., Sher A., Remington J. S., Suzuki Y. TNF-alpha, nitric oxide and IFN-gamma are all critical for development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol. 1999 Jul;21(7):365–376. doi: 10.1046/j.1365-3024.1999.00237.x. [DOI] [PubMed] [Google Scholar]
  25. Liesenfeld O., Kosek J. C., Suzuki Y. Gamma interferon induces Fas-dependent apoptosis of Peyer's patch T cells in mice following peroral infection with Toxoplasma gondii. Infect Immun. 1997 Nov;65(11):4682–4689. doi: 10.1128/iai.65.11.4682-4689.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liesenfeld O., Kosek J., Remington J. S., Suzuki Y. Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. J Exp Med. 1996 Aug 1;184(2):597–607. doi: 10.1084/jem.184.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Luft B. J., Hafner R., Korzun A. H., Leport C., Antoniskis D., Bosler E. M., Bourland D. D., 3rd, Uttamchandani R., Fuhrer J., Jacobson J. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. Members of the ACTG 077p/ANRS 009 Study Team. N Engl J Med. 1993 Sep 30;329(14):995–1000. doi: 10.1056/NEJM199309303291403. [DOI] [PubMed] [Google Scholar]
  28. Manger I. D., Hehl A. B., Boothroyd J. C. The surface of Toxoplasma tachyzoites is dominated by a family of glycosylphosphatidylinositol-anchored antigens related to SAG1. Infect Immun. 1998 May;66(5):2237–2244. doi: 10.1128/iai.66.5.2237-2244.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Manger I. D., Hehl A., Parmley S., Sibley L. D., Marra M., Hillier L., Waterston R., Boothroyd J. C. Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect Immun. 1998 Apr;66(4):1632–1637. doi: 10.1128/iai.66.4.1632-1637.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McGuire W., Hill A. V., Allsopp C. E., Greenwood B. M., Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994 Oct 6;371(6497):508–510. doi: 10.1038/371508a0. [DOI] [PubMed] [Google Scholar]
  31. McLeod R., Boyer K., Roizen N., Stein L., Swisher C., Holfels E., Hopkins J., Mack D., Karrison T., Patel D. The child with congenital toxoplasmosis. Curr Clin Top Infect Dis. 2000;20:189–208. [PubMed] [Google Scholar]
  32. Mordue D. G., Monroy F., La Regina M., Dinarello C. A., Sibley L. D. Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol. 2001 Oct 15;167(8):4574–4584. doi: 10.4049/jimmunol.167.8.4574. [DOI] [PubMed] [Google Scholar]
  33. Odeh M. The role of tumour necrosis factor-alpha in the pathogenesis of complicated falciparum malaria. Cytokine. 2001 Apr 7;14(1):11–18. doi: 10.1006/cyto.2001.0845. [DOI] [PubMed] [Google Scholar]
  34. Pastinen T., Raitio M., Lindroos K., Tainola P., Peltonen L., Syvänen A. C. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res. 2000 Jul;10(7):1031–1042. doi: 10.1101/gr.10.7.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pfefferkorn E. R., Pfefferkorn L. C., Colby E. D. Development of gametes and oocysts in cats fed cysts derived from cloned trophozoites of Toxoplasma gondii. J Parasitol. 1977 Feb;63(1):158–159. [PubMed] [Google Scholar]
  36. Rosenberger C. M., Scott M. G., Gold M. R., Hancock R. E., Finlay B. B. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol. 2000 Jun 1;164(11):5894–5904. doi: 10.4049/jimmunol.164.11.5894. [DOI] [PubMed] [Google Scholar]
  37. Shalon D., Smith S. J., Brown P. O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996 Jul;6(7):639–645. doi: 10.1101/gr.6.7.639. [DOI] [PubMed] [Google Scholar]
  38. Sibley L. D., Boothroyd J. C. Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature. 1992 Sep 3;359(6390):82–85. doi: 10.1038/359082a0. [DOI] [PubMed] [Google Scholar]
  39. Sibley L. D., LeBlanc A. J., Pfefferkorn E. R., Boothroyd J. C. Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics. 1992 Dec;132(4):1003–1015. doi: 10.1093/genetics/132.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243. doi: 10.1016/s0065-2776(08)60387-9. [DOI] [PubMed] [Google Scholar]
  41. Velculescu V. E., Zhang L., Vogelstein B., Kinzler K. W. Serial analysis of gene expression. Science. 1995 Oct 20;270(5235):484–487. doi: 10.1126/science.270.5235.484. [DOI] [PubMed] [Google Scholar]
  42. Wang D. G., Fan J. B., Siao C. J., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998 May 15;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077. [DOI] [PubMed] [Google Scholar]
  43. Winzeler E. A., Richards D. R., Conway A. R., Goldstein A. L., Kalman S., McCullough M. J., McCusker J. H., Stevens D. A., Wodicka L., Lockhart D. J. Direct allelic variation scanning of the yeast genome. Science. 1998 Aug 21;281(5380):1194–1197. doi: 10.1126/science.281.5380.1194. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES