Abstract
Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.
Full Text
The Full Text of this article is available as a PDF (305.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldock C., Koster A. J., Ziese U., Rock M. J., Sherratt M. J., Kadler K. E., Shuttleworth C. A., Kielty C. M. The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol. 2001 Mar 5;152(5):1045–1056. doi: 10.1083/jcb.152.5.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellingham C. M., Woodhouse K. A., Robson P., Rothstein S. J., Keeley F. W. Self-aggregation characteristics of recombinantly expressed human elastin polypeptides. Biochim Biophys Acta. 2001 Nov 26;1550(1):6–19. doi: 10.1016/s0167-4838(01)00262-x. [DOI] [PubMed] [Google Scholar]
- Bressan G. M., Pasquali-Ronchetti I., Fornieri C., Mattioli F., Castellani I., Volpin D. Relevance of aggregation properties of tropoelastin to the assembly and structure of elastic fibers. J Ultrastruct Mol Struct Res. 1986 Mar;94(3):209–216. doi: 10.1016/0889-1605(86)90068-6. [DOI] [PubMed] [Google Scholar]
- Cox B. A., Starcher B. C., Urry D. W. Coacervation of alpha-elastin results in fiber formation. Biochim Biophys Acta. 1973 Jul 12;317(1):209–213. doi: 10.1016/0005-2795(73)90215-8. [DOI] [PubMed] [Google Scholar]
- Davis E. C. Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry. 1993 Jul;100(1):17–26. doi: 10.1007/BF00268874. [DOI] [PubMed] [Google Scholar]
- Debelle L., Alix A. J., Wei S. M., Jacob M. P., Huvenne J. P., Berjot M., Legrand P. The secondary structure and architecture of human elastin. Eur J Biochem. 1998 Dec 1;258(2):533–539. doi: 10.1046/j.1432-1327.1998.2580533.x. [DOI] [PubMed] [Google Scholar]
- Gray W. R., Sandberg L. B., Foster J. A. Molecular model for elastin structure and function. Nature. 1973 Dec 21;246(5434):461–466. doi: 10.1038/246461a0. [DOI] [PubMed] [Google Scholar]
- Hinek A., Rabinovitch M. 67-kD elastin-binding protein is a protective "companion" of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol. 1994 Jul;126(2):563–574. doi: 10.1083/jcb.126.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinek A., Wrenn D. S., Mecham R. P., Barondes S. H. The elastin receptor: a galactoside-binding protein. Science. 1988 Mar 25;239(4847):1539–1541. doi: 10.1126/science.2832941. [DOI] [PubMed] [Google Scholar]
- Jamieson A. M., Downs C. E., Walton A. G. Studies of elastin coacervation by quasielastic light scattering. Biochim Biophys Acta. 1972 Jun 22;271(1):34–47. doi: 10.1016/0005-2795(72)90130-4. [DOI] [PubMed] [Google Scholar]
- King G. S., Mohan V. S., Starcher B. C. Radioimmunoassay for desmosine. Connect Tissue Res. 1980;7(4):263–267. doi: 10.3109/03008208009152362. [DOI] [PubMed] [Google Scholar]
- McConnell C. J., Wright G. M., DeMont M. E. The modulus of elasticity of lobster aorta microfibrils. Experientia. 1996 Sep 15;52(9):918–921. doi: 10.1007/BF01938880. [DOI] [PubMed] [Google Scholar]
- Morelli M. A., DeBiasi M., DeStradis A., Tamburro A. M. An aggregating elastin-like pentapeptide. J Biomol Struct Dyn. 1993 Aug;11(1):181–190. doi: 10.1080/07391102.1993.10508716. [DOI] [PubMed] [Google Scholar]
- PARTRIDGE S. M., DAVIS H. F., ADAIR G. S. The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin. Biochem J. 1955 Sep;61(1):11–21. doi: 10.1042/bj0610011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge S. M. Biosynthesis and nature of elastin structures. Fed Proc. 1966 May-Jun;25(3):1023–1029. [PubMed] [Google Scholar]
- Reiersen H., Clarke A. R., Rees A. R. Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering. J Mol Biol. 1998;283(1):255–264. doi: 10.1006/jmbi.1998.2067. [DOI] [PubMed] [Google Scholar]
- Ross R., Bornstein P. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol. 1969 Feb;40(2):366–381. doi: 10.1083/jcb.40.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R., Fialkow R. J., Altman L. K. The morphogenesis of elastic fibers. Adv Exp Med Biol. 1977;79:7–17. doi: 10.1007/978-1-4684-9093-0_2. [DOI] [PubMed] [Google Scholar]
- Shah M. A., Bergethon P. R., Boak A. M., Gallop P. M., Kagan H. M. Oxidation of peptidyl lysine by copper complexes of pyrroloquinoline quinone and other quinones. A model for oxidative pathochemistry. Biochim Biophys Acta. 1992 Oct 20;1159(3):311–318. doi: 10.1016/0167-4838(92)90061-h. [DOI] [PubMed] [Google Scholar]
- Stahmann M. A., Spencer A. K. Cross linking of proteins in vitro by peroxidase. Biopolymers. 1977 Jun;16(6):1307–1318. doi: 10.1002/bip.1977.360160611. [DOI] [PubMed] [Google Scholar]
- Starcher B., Green M., Scott M. Measurement of urinary desmosine as an indicator of acute pulmonary disease. Respiration. 1995;62(5):252–257. doi: 10.1159/000196458. [DOI] [PubMed] [Google Scholar]
- Starcher B., Percival S. Elastin turnover in the rat uterus. Connect Tissue Res. 1985;13(3):207–215. doi: 10.3109/03008208509152400. [DOI] [PubMed] [Google Scholar]
- Tamburro A. M., Guantieri V., Gordini D. D. Synthesis and structural studies of a pentapeptide sequence of elastin. Poly (Val-Gly-Gly-Leu-Gly). J Biomol Struct Dyn. 1992 Dec;10(3):441–454. doi: 10.1080/07391102.1992.10508661. [DOI] [PubMed] [Google Scholar]
- Urry D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem. 1988 Feb;7(1):1–34. doi: 10.1007/BF01025411. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Long M. M., Cox B. A., Ohnishi T., Mitchell L. W., Jacobs M. The synthetic polypentapeptide of elastin coacervates and forms filamentous aggregates. Biochim Biophys Acta. 1974 Dec 18;371(2):597–602. doi: 10.1016/0005-2795(74)90057-9. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Starcher B., Partridge S. M. Coacervation of solubilized elastin effects a notable conformational change. Nature. 1969 May 24;222(5195):795–796. doi: 10.1038/222795a0. [DOI] [PubMed] [Google Scholar]
- Vrhovski B., Jensen S., Weiss A. S. Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem. 1997 Nov 15;250(1):92–98. doi: 10.1111/j.1432-1033.1997.00092.x. [DOI] [PubMed] [Google Scholar]
- Vrhovski B., Weiss A. S. Biochemistry of tropoelastin. Eur J Biochem. 1998 Nov 15;258(1):1–18. doi: 10.1046/j.1432-1327.1998.2580001.x. [DOI] [PubMed] [Google Scholar]