Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Feb 28;357(1418):155–163. doi: 10.1098/rstb.2001.1030

Biological liquid crystal elastomers.

David P Knight 1, Fritz Vollrath 1
PMCID: PMC1692931  PMID: 11911772

Abstract

Liquid crystal elastomers (LCEs) have recently been described as a new class of matter. Here we review the evidence for the novel conclusion that the fibrillar collagens and the dragline silks of orb web spiders belong to this remarkable class of materials. Unlike conventional rubbers, LCEs are ordered, rather than disordered, at rest. The identification of these biopolymers as LCEs may have a predictive value. It may explain how collagens and spider dragline silks are assembled. It may provide a detailed explanation for their mechanical properties, accounting for the variation between different members of the collagen family and between the draglines in different spider species. It may provide a basis for the design of biomimetic collagen and dragline silk analogues by genetic engineering, peptide- or classical polymer synthesis. Biological LCEs may exhibit a range of exotic properties already identified in other members of this remarkable class of materials. In this paper, the possibility that other transversely banded fibrillar proteins are also LCEs is discussed.

Full Text

The Full Text of this article is available as a PDF (620.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstrom J. A. Organization of the ciliary basal apparatus in embryonic cells of the sea urchin, Lytechinus pictus. Cell Tissue Res. 1992 Aug;269(2):305–313. doi: 10.1007/BF00319622. [DOI] [PubMed] [Google Scholar]
  2. Chapman J. A., Tzaphlidou M., Meek K. M., Kadler K. E. The collagen fibril--a model system for studying the staining and fixation of a protein. Electron Microsc Rev. 1990;3(1):143–182. doi: 10.1016/0892-0354(90)90018-n. [DOI] [PubMed] [Google Scholar]
  3. Dashwood R., Guo D. Inhibition of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-DNA binding by chlorophyllin: studies of enzyme inhibition and molecular complex formation. Carcinogenesis. 1992 Jul;13(7):1121–1126. doi: 10.1093/carcin/13.7.1121. [DOI] [PubMed] [Google Scholar]
  4. Fraser R. D., MacRae T. P., Miller A. Molecular packing in type I collagen fibrils. J Mol Biol. 1987 Jan 5;193(1):115–125. doi: 10.1016/0022-2836(87)90631-0. [DOI] [PubMed] [Google Scholar]
  5. Gatesy J., Hayashi C., Motriuk D., Woods J., Lewis R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science. 2001 Mar 30;291(5513):2603–2605. doi: 10.1126/science.1057561. [DOI] [PubMed] [Google Scholar]
  6. Grubb D. T., Ji G. Molecular chain orientation in supercontracted and re-extended spider silk. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):203–210. doi: 10.1016/s0141-8130(98)00086-5. [DOI] [PubMed] [Google Scholar]
  7. Hijirida D. H., Do K. G., Michal C., Wong S., Zax D., Jelinski L. W. 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J. 1996 Dec;71(6):3442–3447. doi: 10.1016/S0006-3495(96)79539-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hu X. W., Knight D. P., Chapman J. A. The effect of non-polar liquids and non-ionic detergents on the ultrastructure and assembly of rat tail tendon collagen fibrils in vitro. Biochim Biophys Acta. 1997 Mar 15;1334(2-3):327–337. doi: 10.1016/s0304-4165(96)00112-2. [DOI] [PubMed] [Google Scholar]
  9. Hukins D. W., Woodhead-Galloway J., Knight D. P. Molecular tilting in dried elastoidin and its implications for the structures of other collagen fibrils. Biochem Biophys Res Commun. 1976 Dec 20;73(4):1049–1055. doi: 10.1016/0006-291x(76)90229-1. [DOI] [PubMed] [Google Scholar]
  10. Hukins D. W., Woodhead-Galloway J. Liquid-crystal model for the organization of molecules in collagen fibrils [proceedings]. Biochem Soc Trans. 1978;6(1):238–239. doi: 10.1042/bst0060238. [DOI] [PubMed] [Google Scholar]
  11. Hulmes D. J., Miller A., Parry D. A., Piez K. A., Woodhead-Galloway J. Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol. 1973 Sep 5;79(1):137–148. doi: 10.1016/0022-2836(73)90275-1. [DOI] [PubMed] [Google Scholar]
  12. Hulmes D. J., Wess T. J., Prockop D. J., Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys J. 1995 May;68(5):1661–1670. doi: 10.1016/S0006-3495(95)80391-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keene D. R., Maddox B. K., Kuo H. J., Sakai L. Y., Glanville R. W. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem. 1991 Apr;39(4):441–449. doi: 10.1177/39.4.2005373. [DOI] [PubMed] [Google Scholar]
  14. Knight D. P., Hunt S. Fibril structure of collagen in egg capsule of dogfish. Nature. 1974 May 24;249(455):379–380. doi: 10.1038/249379a0. [DOI] [PubMed] [Google Scholar]
  15. Knight D. P., Knight M. M., Vollrath F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int J Biol Macromol. 2000 Jun 13;27(3):205–210. doi: 10.1016/s0141-8130(00)00124-0. [DOI] [PubMed] [Google Scholar]
  16. Knight D. P., Vollrath F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften. 2001 Apr;88(4):179–182. doi: 10.1007/s001140100220. [DOI] [PubMed] [Google Scholar]
  17. Knott L., Bailey A. J. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998 Mar;22(3):181–187. doi: 10.1016/s8756-3282(97)00279-2. [DOI] [PubMed] [Google Scholar]
  18. Knupp C., Chew M., Squire J. Collagen packing in the dogfish egg case wall. J Struct Biol. 1998;122(1-2):101–110. doi: 10.1006/jsbi.1998.3994. [DOI] [PubMed] [Google Scholar]
  19. Knupp C., Squire J. M. A new twist in the collagen story--the type VI segmented supercoil. EMBO J. 2001 Feb 1;20(3):372–376. doi: 10.1093/emboj/20.3.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lees S. Interpreting the equatorial diffraction pattern of collagenous tissues in the light of molecular motion. Biophys J. 1998 Aug;75(2):1058–1061. doi: 10.1016/S0006-3495(98)77595-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leikin S., Rau D. C., Parsegian V. A. Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Biol. 1995 Mar;2(3):205–210. doi: 10.1038/nsb0395-205. [DOI] [PubMed] [Google Scholar]
  22. Madsen B., Shao Z. Z., Vollrath F. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):301–306. doi: 10.1016/s0141-8130(98)00094-4. [DOI] [PubMed] [Google Scholar]
  23. Martin R., Farjanel J., Eichenberger D., Colige A., Kessler E., Hulmes D. J., Giraud-Guille M. M. Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture. J Mol Biol. 2000 Aug 4;301(1):11–17. doi: 10.1006/jmbi.2000.3855. [DOI] [PubMed] [Google Scholar]
  24. Misof K., Rapp G., Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys J. 1997 Mar;72(3):1376–1381. doi: 10.1016/S0006-3495(97)78783-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mosesson M. W., Siebenlist K. R., Hainfeld J. F., Wall J. S. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils. J Struct Biol. 1995 Jul-Aug;115(1):88–101. doi: 10.1006/jsbi.1995.1033. [DOI] [PubMed] [Google Scholar]
  26. Ortolani F., Raspanti M., Marchini M. Correlations between amino acid hydrophobicity scales and stain exclusion capacity of type 1 collagen fibrils. J Electron Microsc (Tokyo) 1994 Feb;43(1):32–38. [PubMed] [Google Scholar]
  27. doi: 10.1098/rspb.1998.0556. [DOI] [PMC free article] [Google Scholar]
  28. doi: 10.1098/rspb.1999.0667. [DOI] [PMC free article] [Google Scholar]
  29. Parry D. A. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem. 1988 Feb;29(1-2):195–209. doi: 10.1016/0301-4622(88)87039-x. [DOI] [PubMed] [Google Scholar]
  30. Riekel C., Bränden C., Craig C., Ferrero C., Heidelbach F., Müller M. Aspects of X-ray diffraction on single spider fibers. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):179–186. doi: 10.1016/s0141-8130(98)00084-1. [DOI] [PubMed] [Google Scholar]
  31. Shao Z., Young R. J., Vollrath F. The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):295–300. doi: 10.1016/s0141-8130(98)00093-2. [DOI] [PubMed] [Google Scholar]
  32. Simmons A. H., Michal C. A., Jelinski L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science. 1996 Jan 5;271(5245):84–87. doi: 10.1126/science.271.5245.84. [DOI] [PubMed] [Google Scholar]
  33. Tatham A. S., Shewry P. R. Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci. 2000 Nov;25(11):567–571. doi: 10.1016/s0968-0004(00)01670-4. [DOI] [PubMed] [Google Scholar]
  34. Teixeira P. I., Warner M. Dynamics of soft and semisoft nematic elastomers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):603–609. doi: 10.1103/physreve.60.603. [DOI] [PubMed] [Google Scholar]
  35. Uchida N. Soft and nonsoft structural transitions in disordered nematic networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Oct;62(4 Pt A):5119–5136. doi: 10.1103/physreve.62.5119. [DOI] [PubMed] [Google Scholar]
  36. Vinée P., Meurer B., Constantinesco A., Kohlberger B., Hauenstein K. H., Laubenberger J., Petkov S. Characterization of human aortic collagen's elasticity by nuclear magnetic resonance. Magn Reson Imaging. 1993;11(3):395–399. doi: 10.1016/0730-725x(93)90072-l. [DOI] [PubMed] [Google Scholar]
  37. Vollrath F., Knight D. P. Liquid crystalline spinning of spider silk. Nature. 2001 Mar 29;410(6828):541–548. doi: 10.1038/35069000. [DOI] [PubMed] [Google Scholar]
  38. Wallace D. The role of hydrophobic bonding in collagen fibril formation: a quantitative model. Biopolymers. 1985 Sep;24(9):1705–1720. doi: 10.1002/bip.360240905. [DOI] [PubMed] [Google Scholar]
  39. Woodhead-Galloway J., Knight D. P. Some observations on the fine structure of elastoidin. Proc R Soc Lond B Biol Sci. 1977 Jan 14;195(1120):355–364. doi: 10.1098/rspb.1977.0015. [DOI] [PubMed] [Google Scholar]
  40. Xu M., Lewis R. V. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7120–7124. doi: 10.1073/pnas.87.18.7120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. van Beek J. D., Kümmerlen J., Vollrath F., Meier B. H. Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):173–178. doi: 10.1016/s0141-8130(98)00083-x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES