Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Feb 28;357(1418):219–227. doi: 10.1098/rstb.2001.1026

Spinning an elastic ribbon of spider silk.

David P Knight 1, Fritz Vollrath 1
PMCID: PMC1692932  PMID: 11911779

Abstract

The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autumn K., Liang Y. A., Hsieh S. T., Zesch W., Chan W. P., Kenny T. W., Fearing R., Full R. J. Adhesive force of a single gecko foot-hair. Nature. 2000 Jun 8;405(6787):681–685. doi: 10.1038/35015073. [DOI] [PubMed] [Google Scholar]
  2. Gatesy J., Hayashi C., Motriuk D., Woods J., Lewis R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science. 2001 Mar 30;291(5513):2603–2605. doi: 10.1126/science.1057561. [DOI] [PubMed] [Google Scholar]
  3. Hormiga G., Scharff N., Coddington J. A. The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Syst Biol. 2000 Sep;49(3):435–462. doi: 10.1080/10635159950127330. [DOI] [PubMed] [Google Scholar]
  4. Knight D. P., Knight M. M., Vollrath F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int J Biol Macromol. 2000 Jun 13;27(3):205–210. doi: 10.1016/s0141-8130(00)00124-0. [DOI] [PubMed] [Google Scholar]
  5. Knight D. P., Vollrath F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften. 2001 Apr;88(4):179–182. doi: 10.1007/s001140100220. [DOI] [PubMed] [Google Scholar]
  6. Madsen B., Shao Z. Z., Vollrath F. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):301–306. doi: 10.1016/s0141-8130(98)00094-4. [DOI] [PubMed] [Google Scholar]
  7. doi: 10.1098/rspb.1998.0365. [DOI] [PMC free article] [Google Scholar]
  8. doi: 10.1098/rspb.1999.0667. [DOI] [PMC free article] [Google Scholar]
  9. Plazaola A., Candelas G. C. Stimulation of fibroin synthesis elicits ultrastructural modifications in spider silk secretory cells. Tissue Cell. 1991;23(2):277–284. doi: 10.1016/0040-8166(91)90082-5. [DOI] [PubMed] [Google Scholar]
  10. Shear W. A., Palmer J. M., Coddington J. A., Bonamo P. M. A devonian spinneret: early evidence of spiders and silk use. Science. 1989 Oct 27;246(4929):479–481. doi: 10.1126/science.246.4929.479. [DOI] [PubMed] [Google Scholar]
  11. Vollrath F., Knight D. P. Liquid crystalline spinning of spider silk. Nature. 2001 Mar 29;410(6828):541–548. doi: 10.1038/35069000. [DOI] [PubMed] [Google Scholar]
  12. Vollrath F., Knight D. P. Structure and function of the silk production pathway in the spider Nephila edulis. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):243–249. doi: 10.1016/s0141-8130(98)00095-6. [DOI] [PubMed] [Google Scholar]
  13. Vollrath F., Madsen B., Shao Z. The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc Biol Sci. 2001 Nov 22;268(1483):2339–2346. doi: 10.1098/rspb.2001.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES