Abstract
During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension.
Full Text
The Full Text of this article is available as a PDF (930.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
- Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox B. A., Starcher B. C., Urry D. W. Coacervation of alpha-elastin results in fiber formation. Biochim Biophys Acta. 1973 Jul 12;317(1):209–213. doi: 10.1016/0005-2795(73)90215-8. [DOI] [PubMed] [Google Scholar]
- Cox B. A., Starcher B. C., Urry D. W. Communication: Coacervation of tropoelastin results in fiber formation. J Biol Chem. 1974 Feb 10;249(3):997–998. [PubMed] [Google Scholar]
- Dorrington K. L., McCrum N. G. Elastin as a rubber. Biopolymers. 1977 Jun;16(6):1201–1222. doi: 10.1002/bip.1977.360160604. [DOI] [PubMed] [Google Scholar]
- Gotte L., Giro M. G., Volpin D., Horne R. W. The ultrastructural organization of elastin. J Ultrastruct Res. 1974 Jan;46(1):23–33. doi: 10.1016/s0022-5320(74)80019-5. [DOI] [PubMed] [Google Scholar]
- Hoeve C. A., Flory P. J. The elastic properties of elastin. Biopolymers. 1974 Apr;13(4):677–686. doi: 10.1002/bip.1974.360130404. [DOI] [PubMed] [Google Scholar]
- Li B., Alonso D. O., Daggett V. The molecular basis for the inverse temperature transition of elastin. J Mol Biol. 2001 Jan 19;305(3):581–592. doi: 10.1006/jmbi.2000.4306. [DOI] [PubMed] [Google Scholar]
- Luan C. H., Harris R. D., Urry D. W. Dielectric relaxation studies on bovine ligamentum nuchae. Biopolymers. 1988 Nov;27(11):1787–1793. doi: 10.1002/bip.360271108. [DOI] [PubMed] [Google Scholar]
- Manno M., Emanuele A., Martorana V., San Biagio P. L., Bulone D., Palma-Vittorelli M. B., McPherson D. T., Xu J., Parker T. M., Urry D. W. Interaction of processes on different length scales in a bioelastomer capable of performing energy conversion. Biopolymers. 2001 Jul;59(1):51–64. doi: 10.1002/1097-0282(200107)59:1<51::AID-BIP1005>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
- PARTRIDGE S. M., DAVIS H. F., ADAIR G. S. The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin. Biochem J. 1955 Sep;61(1):11–21. doi: 10.1042/bj0610011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARTRIDGE S. M., DAVIS H. F. The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin. Biochem J. 1955 Sep;61(1):21–30. doi: 10.1042/bj0610021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Partridge S. M. Biosynthesis and nature of elastin structures. Fed Proc. 1966 May-Jun;25(3):1023–1029. [PubMed] [Google Scholar]
- Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
- Sciortino F., Prasad K. U., Urry D. W., Palma M. U. Self-assembly of bioelastomeric structures from solutions: mean-field critical behavior and Flory-Huggins free energy of interactions. Biopolymers. 1993 May;33(5):743–752. doi: 10.1002/bip.360330504. [DOI] [PubMed] [Google Scholar]
- Urry D. W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem. 1988 Feb;7(1):1–34. doi: 10.1007/BF01025411. [DOI] [PubMed] [Google Scholar]
- Urry D. W. Entropic elastic processes in protein mechanisms. II. Simple (passive) and coupled (active) development of elastic forces. J Protein Chem. 1988 Apr;7(2):81–114. doi: 10.1007/BF01025240. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Haynes B., Zhang H., Harris R. D., Prasad K. U. Mechanochemical coupling in synthetic polypeptides by modulation of an inverse temperature transition. Proc Natl Acad Sci U S A. 1988 May;85(10):3407–3411. doi: 10.1073/pnas.85.10.3407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urry D. W., Henze R., Redington P., Long M. M., Prasad K. U. Temperature dependence of dielectric relaxations in alpha-elastin coacervate: evidence for a peptide librational mode. Biochem Biophys Res Commun. 1985 Apr 30;128(2):1000–1006. doi: 10.1016/0006-291x(85)90146-9. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Long M. M., Sugano H. Cyclic analog of elastin polyhexapeptide exhibits an inverse temperature transition leading to crystallization. J Biol Chem. 1978 Sep 25;253(18):6301–6302. [PubMed] [Google Scholar]
- Urry D. W. On the molecular mechanisms of elastin coacervation and coacervate calcification. Faraday Discuss Chem Soc. 1976;(61):205–212. doi: 10.1039/dc9766100205. [DOI] [PubMed] [Google Scholar]
- Urry D. W., Trapane T. L., Prasad K. U. Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies. Biopolymers. 1985 Dec;24(12):2345–2356. doi: 10.1002/bip.360241212. [DOI] [PubMed] [Google Scholar]
- Vrhovski B., Jensen S., Weiss A. S. Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem. 1997 Nov 15;250(1):92–98. doi: 10.1111/j.1432-1033.1997.00092.x. [DOI] [PubMed] [Google Scholar]
- Weis-Fogh T., Anderson S. O. New molecular model for the long-range elasticity of elastin. Nature. 1970 Aug 15;227(5259):718–721. doi: 10.1038/227718a0. [DOI] [PubMed] [Google Scholar]