Abstract
In recent years, there has been much interest in characterizing statistical properties of natural stimuli in order to better understand the design of perceptual systems. A fruitful approach has been to compare the processing of natural stimuli in real perceptual systems with that of ideal observers derived within the framework of Bayesian statistical decision theory. While this form of optimization theory has provided a deeper understanding of the information contained in natural stimuli as well as of the computational principles employed in perceptual systems, it does not directly consider the process of natural selection, which is ultimately responsible for design. Here we propose a formal framework for analysing how the statistics of natural stimuli and the process of natural selection interact to determine the design of perceptual systems. The framework consists of two complementary components. The first is a maximum fitness ideal observer, a standard Bayesian ideal observer with a utility function appropriate for natural selection. The second component is a formal version of natural selection based upon Bayesian statistical decision theory. Maximum fitness ideal observers and Bayesian natural selection are demonstrated in several examples. We suggest that the Bayesian approach is appropriate not only for the study of perceptual systems but also for the study of many other systems in biology.
Full Text
The Full Text of this article is available as a PDF (718.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATTNEAVE F. Some informational aspects of visual perception. Psychol Rev. 1954 May;61(3):183–193. doi: 10.1037/h0054663. [DOI] [PubMed] [Google Scholar]
- Annis R. C., Frost B. Human visual ecology and orientation anisotropies in acuity. Science. 1973 Nov 16;182(4113):729–731. doi: 10.1126/science.182.4113.729. [DOI] [PubMed] [Google Scholar]
- BARLOW H. B. Increment thresholds at low intensities considered as signal/noise discriminations. J Physiol. 1957 May 23;136(3):469–488. doi: 10.1113/jphysiol.1957.sp005774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRUNSWIK E., KAMIYA J. Ecological cue-validity of proximity and of other Gestalt factors. Am J Psychol. 1953 Jan;66(1):20–32. [PubMed] [Google Scholar]
- Bell A. J., Sejnowski T. J. The "independent components" of natural scenes are edge filters. Vision Res. 1997 Dec;37(23):3327–3338. doi: 10.1016/s0042-6989(97)00121-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brainard D. H., Freeman W. T. Bayesian color constancy. J Opt Soc Am A Opt Image Sci Vis. 1997 Jul;14(7):1393–1411. doi: 10.1364/josaa.14.001393. [DOI] [PubMed] [Google Scholar]
- Buchsbaum G., Gottschalk A. Chromaticity coordinates of frequency-limited functions. J Opt Soc Am A. 1984 Aug;1(8):885–887. doi: 10.1364/josaa.1.000885. [DOI] [PubMed] [Google Scholar]
- Burgess A. E., Wagner R. F., Jennings R. J., Barlow H. B. Efficiency of human visual signal discrimination. Science. 1981 Oct 2;214(4516):93–94. doi: 10.1126/science.7280685. [DOI] [PubMed] [Google Scholar]
- Chiao C. C., Vorobyev M., Cronin T. W., Osorio D. Spectral tuning of dichromats to natural scenes. Vision Res. 2000;40(23):3257–3271. doi: 10.1016/s0042-6989(00)00156-5. [DOI] [PubMed] [Google Scholar]
- Coppola D. M., Purves H. R., McCoy A. N., Purves D. The distribution of oriented contours in the real world. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4002–4006. doi: 10.1073/pnas.95.7.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dan Y., Atick J. J., Reid R. C. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci. 1996 May 15;16(10):3351–3362. doi: 10.1523/JNEUROSCI.16-10-03351.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field D. J. Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A. 1987 Dec;4(12):2379–2394. doi: 10.1364/josaa.4.002379. [DOI] [PubMed] [Google Scholar]
- Geisler W. S., Perry J. S., Super B. J., Gallogly D. P. Edge co-occurrence in natural images predicts contour grouping performance. Vision Res. 2001 Mar;41(6):711–724. doi: 10.1016/s0042-6989(00)00277-7. [DOI] [PubMed] [Google Scholar]
- Geisler W. S. Physical limits of acuity and hyperacuity. J Opt Soc Am A. 1984 Jul;1(7):775–782. doi: 10.1364/josaa.1.000775. [DOI] [PubMed] [Google Scholar]
- Geisler W. S. Sequential ideal-observer analysis of visual discriminations. Psychol Rev. 1989 Apr;96(2):267–314. doi: 10.1037/0033-295x.96.2.267. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D. The genetical evolution of social behaviour. I. J Theor Biol. 1964 Jul;7(1):1–16. doi: 10.1016/0022-5193(64)90038-4. [DOI] [PubMed] [Google Scholar]
- Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
- Knill D. C. Discrimination of planar surface slant from texture: human and ideal observers compared. Vision Res. 1998 Jun;38(11):1683–1711. doi: 10.1016/s0042-6989(97)00325-8. [DOI] [PubMed] [Google Scholar]
- Knill D. C. Surface orientation from texture: ideal observers, generic observers and the information content of texture cues. Vision Res. 1998 Jun;38(11):1655–1682. doi: 10.1016/s0042-6989(97)00324-6. [DOI] [PubMed] [Google Scholar]
- Laughlin S. A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C. 1981 Sep-Oct;36(9-10):910–912. [PubMed] [Google Scholar]
- Liu Z., Knill D. C., Kersten D. Object classification for human and ideal observers. Vision Res. 1995 Feb;35(4):549–568. doi: 10.1016/0042-6989(94)00150-k. [DOI] [PubMed] [Google Scholar]
- Lythgoe J. N., Partridge J. C. Visual pigments and the acquisition of visual information. J Exp Biol. 1989 Sep;146:1–20. doi: 10.1242/jeb.146.1.1a. [DOI] [PubMed] [Google Scholar]
- Maloney L. T. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J Opt Soc Am A. 1986 Oct;3(10):1673–1683. doi: 10.1364/josaa.3.001673. [DOI] [PubMed] [Google Scholar]
- Maloney L. T., Wandell B. A. Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am A. 1986 Jan;3(1):29–33. doi: 10.1364/josaa.3.000029. [DOI] [PubMed] [Google Scholar]
- Olshausen B. A., Field D. J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 1997 Dec;37(23):3311–3325. doi: 10.1016/s0042-6989(97)00169-7. [DOI] [PubMed] [Google Scholar]
- Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
- Regan B. C., Julliot C., Simmen B., Viénot F., Charles-Dominique P., Mollon J. D. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 1998 Nov;38(21):3321–3327. doi: 10.1016/s0042-6989(97)00462-8. [DOI] [PubMed] [Google Scholar]
- Regan B. C., Julliot C., Simmen B., Viénot F., Charles-Dominique P., Mollon J. D. Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond B Biol Sci. 2001 Mar 29;356(1407):229–283. doi: 10.1098/rstb.2000.0773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigman M., Cecchi G. A., Gilbert C. D., Magnasco M. O. On a common circle: natural scenes and Gestalt rules. Proc Natl Acad Sci U S A. 2001 Feb 6;98(4):1935–1940. doi: 10.1073/pnas.031571498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simoncelli E. P., Olshausen B. A. Natural image statistics and neural representation. Annu Rev Neurosci. 2001;24:1193–1216. doi: 10.1146/annurev.neuro.24.1.1193. [DOI] [PubMed] [Google Scholar]
- Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
- Switkes E., Mayer M. J., Sloan J. A. Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis. Vision Res. 1978;18(10):1393–1399. doi: 10.1016/0042-6989(78)90232-8. [DOI] [PubMed] [Google Scholar]
- Timney B. N., Muir D. W. Orientation anisotropy: incidence and magnitude in Caucasian and Chinese subjects. Science. 1976 Aug 20;193(4254):699–701. doi: 10.1126/science.948748. [DOI] [PubMed] [Google Scholar]
- Vos J. J., Walraven P. L. An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. Vision Res. 1972 Aug;12(8):1327–1344. doi: 10.1016/0042-6989(72)90181-2. [DOI] [PubMed] [Google Scholar]
- Watson A. B., Barlow H. B., Robson J. G. What does the eye see best? 1983 Mar 31-Apr 6Nature. 302(5907):419–422. doi: 10.1038/302419a0. [DOI] [PubMed] [Google Scholar]
- van Hateren J. H. A theory of maximizing sensory information. Biol Cybern. 1992;68(1):23–29. doi: 10.1007/BF00203134. [DOI] [PubMed] [Google Scholar]
- van Hateren J. H., Ruderman D. L. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc Biol Sci. 1998 Dec 7;265(1412):2315–2320. doi: 10.1098/rspb.1998.0577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Hateren J. H., van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc Biol Sci. 1998 Mar 7;265(1394):359–366. doi: 10.1098/rspb.1998.0303. [DOI] [PMC free article] [PubMed] [Google Scholar]