Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Apr 29;357(1420):505–519. doi: 10.1098/rstb.2001.1036

The evolution of drug-resistant malaria: the role of drug elimination half-life.

Ian M Hastings 1, William M Watkins 1, Nicholas J White 1
PMCID: PMC1692966  PMID: 12028788

Abstract

This paper seeks to define and quantify the influence of drug elimination half-life on the evolution of antimalarial drug resistance. There are assumed to be three general classes of susceptibility of the malaria parasite Plasmodium falciparum to a drug: Res0, the original, susceptible wildtype; Res1, a group of intermediate levels of susceptibility that are more tolerant of the drug but still cleared by treatment; and Res2, which is completely resistant to the drug. Res1 and Res2 resistance both evolve much faster if the antimalarial drug has a long half-life. We show that previous models have significantly underestimated the rate of evolution of Res2 resistance by omitting the effects of drug half-life. The methodology has been extended to investigate (i) the effects of using drugs in combination, particularly when the components have differing half-lives, and (ii) the specific example of the development of resistance to the antimalarial pyrimethamine-sulphadoxine. An important detail of the model is the development of drug resistance in two separate phases. In phase A, Res1 is spreading and replacing the original sensitive forms while Res2 remains at a low level. Phase B starts once parasites are selected that can escape drug action (Res1 genotypes with borderline chemosensitivity, and Res2): these parasites are rapidly selected, a process that leads to widespread clinical failure. Drug treatment is clinically successful during phase A, and health workers may be unaware of the substantial changes in parasite population genetic structure that predicate the onset of phase B. Surveillance programs are essential, following the introduction of a new drug, to monitor effectively changes in treatment efficacy and thus provide advance warning of drug failure. The model is also applicable to the evolution of antibiotic resistance in bacteria: in particular, the need for these models to incorporate drug pharmacokinetics to avoid potentially large errors in their predictions.

Full Text

The Full Text of this article is available as a PDF (219.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnot D. Unstable malaria in Sudan: the influence of the dry season. Clone multiplicity of Plasmodium falciparum infections in individuals exposed to variable levels of disease transmission. Trans R Soc Trop Med Hyg. 1998 Nov-Dec;92(6):580–585. doi: 10.1016/s0035-9203(98)90773-8. [DOI] [PubMed] [Google Scholar]
  2. Austin D. J., White N. J., Anderson R. M. The dynamics of drug action on the within-host population growth of infectious agents: melding pharmacokinetics with pathogen population dynamics. J Theor Biol. 1998 Oct 7;194(3):313–339. doi: 10.1006/jtbi.1997.0438. [DOI] [PubMed] [Google Scholar]
  3. Cross A. P., Singer B. Modelling the development of resistance of Plasmodium falciparum to anti-malarial drugs. Trans R Soc Trop Med Hyg. 1991 May-Jun;85(3):349–355. doi: 10.1016/0035-9203(91)90286-8. [DOI] [PubMed] [Google Scholar]
  4. Curtis C. F., Otoo L. N. A simple model of the build-up of resistance to mixtures of anti-malarial drugs. Trans R Soc Trop Med Hyg. 1986;80(6):889–892. doi: 10.1016/0035-9203(86)90248-8. [DOI] [PubMed] [Google Scholar]
  5. Dye C., Williams B. G. Multigenic drug resistance among inbred malaria parasites. Proc Biol Sci. 1997 Jan 22;264(1378):61–67. doi: 10.1098/rspb.1997.0009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodman C. A., Coleman P. G., Mills A. J. Cost-effectiveness of malaria control in sub-Saharan Africa. Lancet. 1999 Jul 31;354(9176):378–385. doi: 10.1016/s0140-6736(99)02141-8. [DOI] [PubMed] [Google Scholar]
  7. Hastings I. M. A model for the origins and spread of drug-resistant malaria. Parasitology. 1997 Aug;115(Pt 2):133–141. doi: 10.1017/s0031182097001261. [DOI] [PubMed] [Google Scholar]
  8. Hastings I. M., D'Alessandro U. Modelling a predictable disaster: the rise and spread of drug-resistantmalaria. Parasitol Today. 2000 Aug;16(8):340–347. doi: 10.1016/s0169-4758(00)01707-5. [DOI] [PubMed] [Google Scholar]
  9. Helsby N. A., Watkins W. M., Mberu E., Ward S. A. Inter-individual variation in the metabolic activation of the antimalarial biguanides. Parasitol Today. 1991 May;7(5):120–123. doi: 10.1016/0169-4758(91)90171-j. [DOI] [PubMed] [Google Scholar]
  10. Koella J. C. Costs and benefits of resistance against antimalarial drugs. Parasitol Today. 1998 Sep;14(9):360–364. doi: 10.1016/s0169-4758(98)01297-6. [DOI] [PubMed] [Google Scholar]
  11. Lipsitch M., Levin B. R. The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother. 1997 Feb;41(2):363–373. doi: 10.1128/aac.41.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mberu E. K., Mosobo M. K., Nzila A. M., Kokwaro G. O., Sibley C. H., Watkins W. M. The changing in vitro susceptibility pattern to pyrimethamine/sulfadoxine in Plasmodium falciparum field isolates from Kilifi, Kenya. Am J Trop Med Hyg. 2000 Mar;62(3):396–401. doi: 10.4269/ajtmh.2000.62.396. [DOI] [PubMed] [Google Scholar]
  13. Msuya F. H., Curtis C. F. Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria. Part 4. Effects on incidence of malaria infection. Acta Trop. 1991 Aug;49(3):165–171. doi: 10.1016/0001-706x(91)90035-i. [DOI] [PubMed] [Google Scholar]
  14. Nzila-Mounda A., Mberu E. K., Sibley C. H., Plowe C. V., Winstanley P. A., Watkins W. M. Kenyan Plasmodium falciparum field isolates: correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob Agents Chemother. 1998 Jan;42(1):164–169. doi: 10.1128/aac.42.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nzila A. M., Mberu E. K., Sulo J., Dayo H., Winstanley P. A., Sibley C. H., Watkins W. M. Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother. 2000 Apr;44(4):991–996. doi: 10.1128/aac.44.4.991-996.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nzila A. M., Nduati E., Mberu E. K., Hopkins Sibley C., Monks S. A., Winstanley P. A., Watkins W. M. Molecular evidence of greater selective pressure for drug resistance exerted by the long-acting antifolate Pyrimethamine/Sulfadoxine compared with the shorter-acting chlorproguanil/dapsone on Kenyan Plasmodium falciparum. J Infect Dis. 2000 Jun 5;181(6):2023–2028. doi: 10.1086/315520. [DOI] [PubMed] [Google Scholar]
  17. Peters W. The prevention of antimalarial drug resistance. Pharmacol Ther. 1990;47(3):499–508. doi: 10.1016/0163-7258(90)90067-c. [DOI] [PubMed] [Google Scholar]
  18. Phillips M., Phillips-Howard P. A. Economic implications of resistance to antimalarial drugs. Pharmacoeconomics. 1996 Sep;10(3):225–238. doi: 10.2165/00019053-199610030-00004. [DOI] [PubMed] [Google Scholar]
  19. Plowe C. V., Cortese J. F., Djimde A., Nwanyanwu O. C., Watkins W. M., Winstanley P. A., Estrada-Franco J. G., Mollinedo R. E., Avila J. C., Cespedes J. L. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J Infect Dis. 1997 Dec;176(6):1590–1596. doi: 10.1086/514159. [DOI] [PubMed] [Google Scholar]
  20. Price R. N., Nosten F., Luxemburger C., Kham A., Brockman A., Chongsuphajaisiddhi T., White N. J. Artesunate versus artemether in combination with mefloquine for the treatment of multidrug-resistant falciparum malaria. Trans R Soc Trop Med Hyg. 1995 Sep-Oct;89(5):523–527. doi: 10.1016/0035-9203(95)90094-2. [DOI] [PubMed] [Google Scholar]
  21. Robert V., Awono-Ambene H. P., Le Hesran J. Y., Trape J. F. Gametocytemia and infectivity to mosquitoes of patients with uncomplicated Plasmodium falciparum malaria attacks treated with chloroquine or sulfadoxine plus pyrimethamine. Am J Trop Med Hyg. 2000 Feb;62(2):210–216. doi: 10.4269/ajtmh.2000.62.210. [DOI] [PubMed] [Google Scholar]
  22. Snow R. W., Craig M., Deichmann U., Marsh K. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull World Health Organ. 1999;77(8):624–640. [PMC free article] [PubMed] [Google Scholar]
  23. Teja-Isavadharm P., Nosten F., Kyle D. E., Luxemburger C., Ter Kuile F., Peggins J. O., Brewer T. G., White N. J. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. Br J Clin Pharmacol. 1996 Nov;42(5):599–604. doi: 10.1111/j.1365-2125.1996.tb00115.x. [DOI] [PubMed] [Google Scholar]
  24. Trape J. F., Pison G., Preziosi M. P., Enel C., Desgrées du Loû A., Delaunay V., Samb B., Lagarde E., Molez J. F., Simondon F. Impact of chloroquine resistance on malaria mortality. C R Acad Sci III. 1998 Aug;321(8):689–697. doi: 10.1016/s0764-4469(98)80009-7. [DOI] [PubMed] [Google Scholar]
  25. Trigg J. K., Mbwana H., Chambo O., Hills E., Watkins W., Curtis C. F. Resistance to pyrimethamine/sulfadoxine in Plasmodium falciparum in 12 villages in north east Tanzania and a test of chlorproguanil/dapsone. Acta Trop. 1997 Feb;63(2-3):185–189. doi: 10.1016/s0001-706x(96)00617-1. [DOI] [PubMed] [Google Scholar]
  26. Ward S. A., Watkins W. M., Mberu E., Saunders J. E., Koech D. K., Gilles H. M., Howells R. E., Breckenridge A. M. Inter-subject variability in the metabolism of proguanil to the active metabolite cycloguanil in man. Br J Clin Pharmacol. 1989 Jun;27(6):781–787. doi: 10.1111/j.1365-2125.1989.tb03440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Watkins W. M., Chulay J. D., Sixsmith D. G., Spencer H. C., Howells R. E. A preliminary pharmacokinetic study of the antimalarial drugs, proguanil and chlorproguanil. J Pharm Pharmacol. 1987 Apr;39(4):261–265. doi: 10.1111/j.2042-7158.1987.tb06263.x. [DOI] [PubMed] [Google Scholar]
  28. Watkins W. M., Mberu E. K., Nevill C. G., Ward S. A., Breckenridge A. M., Koech D. K. Variability in the metabolism of proguanil to the active metabolite cycloguanil in healthy Kenyan adults. Trans R Soc Trop Med Hyg. 1990 Jul-Aug;84(4):492–495. doi: 10.1016/0035-9203(90)90010-c. [DOI] [PubMed] [Google Scholar]
  29. Watkins W. M., Mberu E. K., Winstanley P. A., Plowe C. V. The efficacy of antifolate antimalarial combinations in Africa: a predictive model based on pharmacodynamic and pharmacokinetic analyses. Parasitol Today. 1997 Dec;13(12):459–464. doi: 10.1016/s0169-4758(97)01124-1. [DOI] [PubMed] [Google Scholar]
  30. Watkins W. M., Mosobo M. Treatment of Plasmodium falciparum malaria with pyrimethamine-sulfadoxine: selective pressure for resistance is a function of long elimination half-life. Trans R Soc Trop Med Hyg. 1993 Jan-Feb;87(1):75–78. doi: 10.1016/0035-9203(93)90431-o. [DOI] [PubMed] [Google Scholar]
  31. White N. J., Nosten F., Looareesuwan S., Watkins W. M., Marsh K., Snow R. W., Kokwaro G., Ouma J., Hien T. T., Molyneux M. E. Averting a malaria disaster. Lancet. 1999 Jun 5;353(9168):1965–1967. doi: 10.1016/s0140-6736(98)07367-x. [DOI] [PubMed] [Google Scholar]
  32. White N. J., Olliaro P. L. Strategies for the prevention of antimalarial drug resistance: rationale for combination chemotherapy for malaria. Parasitol Today. 1996 Oct;12(10):399–401. doi: 10.1016/0169-4758(96)10055-7. [DOI] [PubMed] [Google Scholar]
  33. White N. J. Preventing antimalarial drug resistance through combinations. Drug Resist Updat. 1998 Mar;1(1):3–9. doi: 10.1016/s1368-7646(98)80208-2. [DOI] [PubMed] [Google Scholar]
  34. White N. Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci. 1999 Apr 29;354(1384):739–749. doi: 10.1098/rstb.1999.0426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winstanley P. A. Chemotherapy for falciparum malaria: the armoury, the problems and the prospects. Parasitol Today. 2000 Apr;16(4):146–153. doi: 10.1016/s0169-4758(99)01622-1. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES