Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Apr 29;357(1420):449–469. doi: 10.1098/rstb.2001.0837

Inositol phosphates in the environment.

Benjamin L Turner 1, Michael J Papházy 1, Philip M Haygarth 1, Ian D McKelvie 1
PMCID: PMC1692967  PMID: 12028785

Abstract

The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment.

Full Text

The Full Text of this article is available as a PDF (541.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batty I. R., Nahorski S. R., Irvine R. F. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J. 1985 Nov 15;232(1):211–215. doi: 10.1042/bj2320211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brando C., Hoffman T., Bonvini E. High-performance liquid chromatographic separation of inositol phosphate isomers employing a reversed-phase column and a micellar mobile phase. J Chromatogr. 1990 Jul 13;529(1):65–80. doi: 10.1016/s0378-4347(00)83808-6. [DOI] [PubMed] [Google Scholar]
  3. Brearley C. A., Hanke D. E. Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem J. 1996 Feb 15;314(Pt 1):215–225. doi: 10.1042/bj3140215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broeders M. J. M., Onland-Moret N. C., Rijken H. J. T. M., Hendriks J. H. C. L., Verbeek A. L. M., Holland R. Use of previous screening mammograms to identify features indicating cases that would have a possible gain in prognosis following earlier detection. Eur J Cancer. 2003 Aug;39(12):1770–1775. doi: 10.1016/s0959-8049(03)00311-3. [DOI] [PubMed] [Google Scholar]
  5. Cosgrove D. J. Ion-exchange chromatography of inositol polyphosphates. Ann N Y Acad Sci. 1969 Oct 17;165(2):677–686. [PubMed] [Google Scholar]
  6. Costello A. J., Glonek T., Myers T. C. 31P nuclear magnetic resonance-pH titrations of myo-inositol hexaphosphate. Carbohydr Res. 1976 Feb;46(2):159–171. doi: 10.1016/s0008-6215(00)84287-1. [DOI] [PubMed] [Google Scholar]
  7. Crans D. C., Mikus M., Marshman R. W. 31P NMR examination of phosphorus metabolites in the aqueous, acidic, and organic extracts of Phaseolus vulgaris seeds. Anal Biochem. 1993 Feb 15;209(1):85–94. doi: 10.1006/abio.1993.1086. [DOI] [PubMed] [Google Scholar]
  8. Dean N. M., Beaven M. A. Methods for the analysis of inositol phosphates. Anal Biochem. 1989 Dec;183(2):199–209. doi: 10.1016/0003-2697(89)90468-5. [DOI] [PubMed] [Google Scholar]
  9. Farrell D. J., Martin E. A. Strategies to improve the nutritive value of rice bran in poultry diets. III. The addition of inorganic phosphorus and a phytase to duck diets. Br Poult Sci. 1998 Dec;39(5):601–611. doi: 10.1080/00071669888467. [DOI] [PubMed] [Google Scholar]
  10. Graf E., Dintzis F. R. High-performance liquid chromatographic method for the determination of phytate. Anal Biochem. 1982 Jan 15;119(2):413–417. doi: 10.1016/0003-2697(82)90606-6. [DOI] [PubMed] [Google Scholar]
  11. Greaves M. P., Webley D. M. A study of the breakdown of organic phosphates by micro-organisms from the root region of certain pasture grasses. J Appl Bacteriol. 1965 Dec;28(3):454–465. doi: 10.1111/j.1365-2672.1965.tb02176.x. [DOI] [PubMed] [Google Scholar]
  12. Guse A. H., Goldwich A., Weber K., Mayr G. W. Non-radioactive, isomer-specific inositol phosphate mass determinations: high-performance liquid chromatography-micro-metal-dye detection strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J Chromatogr B Biomed Appl. 1995 Oct 20;672(2):189–198. doi: 10.1016/0378-4347(95)00219-9. [DOI] [PubMed] [Google Scholar]
  13. Hatzack F., Rasmussen S. K. High-performance thin-layer chromatography method for inositol phosphate analysis. J Chromatogr B Biomed Sci Appl. 1999 Dec 24;736(1-2):221–229. doi: 10.1016/s0378-4347(99)00465-x. [DOI] [PubMed] [Google Scholar]
  14. Heathers G. P., Juehne T., Rubin L. J., Corr P. B., Evers A. S. Anion exchange chromatographic separation of inositol phosphates and their quantification by gas chromatography. Anal Biochem. 1989 Jan;176(1):109–116. doi: 10.1016/0003-2697(89)90280-7. [DOI] [PubMed] [Google Scholar]
  15. Herbes S. E., Allen H. E., Mancy K. H. Enzymatic characterization of soluble organic phosphorus in lake water. Science. 1975 Feb 7;187(4175):432–434. doi: 10.1126/science.187.4175.432. [DOI] [PubMed] [Google Scholar]
  16. Hsu F. F., Goldman H. D., Sherman W. R. Thermospray liquid chromatographic/mass spectrometric studies with inositol phosphates. Biomed Environ Mass Spectrom. 1990 Oct;19(10):597–600. doi: 10.1002/bms.1200191004. [DOI] [PubMed] [Google Scholar]
  17. Hsu F. F., Sherman W. R. Performing high salt concentration gradient elution ion-exchange separations using thermospray mass spectrometry. J Chromatogr. 1989 Oct 6;479(2):437–440. doi: 10.1016/s0021-9673(01)83360-4. [DOI] [PubMed] [Google Scholar]
  18. Huff W. E., Moore P. A., Jr, Waldroup P. W., Waldroup A. L., Balog J. M., Huff G. R., Rath N. C., Daniel T. C., Raboy V. Effect of dietary phytase and high available phosphorus corn on broiler chicken performance. Poult Sci. 1998 Dec;77(12):1899–1904. doi: 10.1093/ps/77.12.1899. [DOI] [PubMed] [Google Scholar]
  19. Johnson K., Barrientos L. G., Le L., Murthy P. P. Application of two-dimensional total correlation spectroscopy for structure determination of individual inositol phosphates in a mixture. Anal Biochem. 1995 Nov 1;231(2):421–431. doi: 10.1006/abio.1995.0073. [DOI] [PubMed] [Google Scholar]
  20. Kemme P. A., Lommen A., De Jonge L. H., Van der Klis J. D., Jongbloed A. W., Mroz Z., Beynen A. C. Quantification of inositol phosphates using (31)P nuclear magnetic resonance spectroscopy in animal nutrition. J Agric Food Chem. 1999 Dec;47(12):5116–5121. doi: 10.1021/jf981375v. [DOI] [PubMed] [Google Scholar]
  21. Lei X., Ku P. K., Miller E. R., Ullrey D. E., Yokoyama M. T. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J Nutr. 1993 Jun;123(6):1117–1123. doi: 10.1093/jn/123.6.1117. [DOI] [PubMed] [Google Scholar]
  22. Liu J., Bollinger D. W., Ledoux D. R., Veum T. L. Lowering the dietary calcium to total phosphorus ratio increases phosphorus utilization in low-phosphorus corn-soybean meal diets supplemented with microbial phytase for growing-finishing pigs. J Anim Sci. 1998 Mar;76(3):808–813. doi: 10.2527/1998.763808x. [DOI] [PubMed] [Google Scholar]
  23. Luttrell B. M. The biological relevance of the binding of calcium ions by inositol phosphates. J Biol Chem. 1993 Jan 25;268(3):1521–1524. [PubMed] [Google Scholar]
  24. Martin C. J., Evans W. J. Phytic acid-metal ion interactions. II. The effect of pH on Ca(II) binding. J Inorg Biochem. 1986 May;27(1):17–30. doi: 10.1016/0162-0134(86)80105-2. [DOI] [PubMed] [Google Scholar]
  25. Martin C. J. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase. J Inorg Biochem. 1995 May 1;58(2):89–107. doi: 10.1016/0162-0134(94)00038-c. [DOI] [PubMed] [Google Scholar]
  26. Mathews W. R., Guido D. M., Huff R. M. Anion-exchange high-performance liquid chromatographic analysis of inositol phosphates. Anal Biochem. 1988 Jan;168(1):63–70. doi: 10.1016/0003-2697(88)90010-3. [DOI] [PubMed] [Google Scholar]
  27. Mayr G. W. A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem J. 1988 Sep 1;254(2):585–591. doi: 10.1042/bj2540585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Minear R. A., Segars J. E., Elwood J. W., Mulholland P. J. Separation of inositol phosphates by high-performance ion-exchange chromatography. Analyst. 1988 Apr;113(4):645–649. doi: 10.1039/an9881300645. [DOI] [PubMed] [Google Scholar]
  29. Morse D., Head H. H., Wilcox C. J. Disappearance of phosphorus in phytate from concentrates in vitro and from rations fed to lactating dairy cows. J Dairy Sci. 1992 Jul;75(7):1979–1986. doi: 10.3168/jds.S0022-0302(92)77957-0. [DOI] [PubMed] [Google Scholar]
  30. O'Neill I. K., Sargent M., Trimble M. L. Determination of phytate in foods by phosphorus-31 Fourier transform nuclear magnetic resonance spectrometry. Anal Chem. 1980 Jul;52(8):1288–1291. doi: 10.1021/ac50058a031. [DOI] [PubMed] [Google Scholar]
  31. Pallauf J., Rimbach G. Nutritional significance of phytic acid and phytase. Arch Tierernahr. 1997;50(4):301–319. doi: 10.1080/17450399709386141. [DOI] [PubMed] [Google Scholar]
  32. Palmer S., Wakelam M. J. Mass measurement of inositol phosphates. Biochim Biophys Acta. 1989 Dec 14;1014(3):239–246. doi: 10.1016/0167-4889(89)90219-x. [DOI] [PubMed] [Google Scholar]
  33. Patthy M., Balla T., Arányi P. High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Separation of myo-inositol phosphates, some common nucleotides and sugar phosphates. J Chromatogr. 1990 Dec 7;523:201–216. doi: 10.1016/0021-9673(90)85023-o. [DOI] [PubMed] [Google Scholar]
  34. Phillippy B. Q., Bland J. M. Gradient ion chromatography of inositol phosphates. Anal Biochem. 1988 Nov 15;175(1):162–166. doi: 10.1016/0003-2697(88)90374-0. [DOI] [PubMed] [Google Scholar]
  35. Phillippy B. Q., White K. D., Johnston M. R., Tao S. H., Fox M. R. Preparation of inositol phosphates from sodium phytate by enzymatic and nonenzymatic hydrolysis. Anal Biochem. 1987 Apr;162(1):115–121. doi: 10.1016/0003-2697(87)90015-7. [DOI] [PubMed] [Google Scholar]
  36. Plaami S., Kumpulainen J. Determination of phytic acid in cereals using ICP-AES to determine phosphorus. J Assoc Off Anal Chem. 1991 Jan-Feb;74(1):32–36. [PubMed] [Google Scholar]
  37. Portilla D., Morrison A. R. Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells. Biochem Biophys Res Commun. 1986 Oct 30;140(2):644–649. doi: 10.1016/0006-291x(86)90780-1. [DOI] [PubMed] [Google Scholar]
  38. Prestwich S. A., Bolton T. B. Measurement of picomole amounts of any inositol phosphate isomer separable by h.p.l.c. by means of a bioluminescence assay. Biochem J. 1991 Mar 15;274(Pt 3):663–672. doi: 10.1042/bj2740663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Richardson A. E., Hadobas P. A., Hayes J. E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 2001 Mar;25(6):641–649. doi: 10.1046/j.1365-313x.2001.00998.x. [DOI] [PubMed] [Google Scholar]
  40. Rittenhouse S. E., Sasson J. P. Mass changes in myoinositol trisphosphate in human platelets stimulated by thrombin. Inhibitory effects of phorbol ester. J Biol Chem. 1985 Jul 25;260(15):8657–8660. [PubMed] [Google Scholar]
  41. Rounds M. A., Nielsen S. S. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates. J Chromatogr A. 1993 Oct 29;653(1):148–152. doi: 10.1016/0021-9673(93)80404-V. [DOI] [PubMed] [Google Scholar]
  42. Shan Y., McKelvie I. D., Hart B. T. Characterization of immobilized Escherichia coli alkaline phosphatase reactors in flow injection analysis. Anal Chem. 1993 Nov 1;65(21):3053–3060. doi: 10.1021/ac00069a018. [DOI] [PubMed] [Google Scholar]
  43. Simons P. C., Versteegh H. A., Jongbloed A. W., Kemme P. A., Slump P., Bos K. D., Wolters M. G., Beudeker R. F., Verschoor G. J. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr. 1990 Sep;64(2):525–540. doi: 10.1079/bjn19900052. [DOI] [PubMed] [Google Scholar]
  44. Stephens L. R., Irvine R. F. Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature. 1990 Aug 9;346(6284):580–583. doi: 10.1038/346580a0. [DOI] [PubMed] [Google Scholar]
  45. Tao L., Li W. Rapid and sensitive anion-exchange high-performance liquid chromatographic determination of radiolabeled inositol phosphates and inositol trisphosphate isomers in cellular systems. J Chromatogr. 1992 Aug 21;607(1):19–24. doi: 10.1016/0021-9673(92)87049-e. [DOI] [PubMed] [Google Scholar]
  46. Taylor G. S., Garcia J. G., Dukes R., English D. High-performance liquid chromatographic analysis of radiolabeled inositol phosphates. Anal Biochem. 1990 Jul;188(1):118–122. doi: 10.1016/0003-2697(90)90538-k. [DOI] [PubMed] [Google Scholar]
  47. Turner B. L., Haygarth P. M. Biogeochemistry. Phosphorus solubilization in rewetted soils. Nature. 2001 May 17;411(6835):258–258. doi: 10.1038/35077146. [DOI] [PubMed] [Google Scholar]
  48. Turner Benjamin L., McKelvie Ian D. A novel technique for the pre-concentration and extraction of inositol hexakisphosphate from soil extracts with determination by phosphorus-31 nuclear magnetic resonance. J Environ Qual. 2002 Mar-Apr;31(2):466–470. [PubMed] [Google Scholar]
  49. Ullah A. H., Gibson D. M. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem. 1987;17(1):63–91. doi: 10.1080/00327488708062477. [DOI] [PubMed] [Google Scholar]
  50. White R. H., Miller S. L. Inositol isomers: occurrence in marine sediments. Science. 1976 Sep 3;193(4256):885–886. doi: 10.1126/science.193.4256.885. [DOI] [PubMed] [Google Scholar]
  51. Wolters M. G., Schreuder H. A., van den Heuvel G., van Lonkhuijsen H. J., Hermus R. J., Voragen A. G. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: application to breads varying in phytic acid content. Br J Nutr. 1993 May;69(3):849–861. doi: 10.1079/bjn19930085. [DOI] [PubMed] [Google Scholar]
  52. Xu P., Price J., Aggett P. J. Recent advances in methodology for analysis of phytate and inositol phosphates in foods. Prog Food Nutr Sci. 1992;16(3):245–262. [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES