Abstract
We define the Gaia system of life and its environment on Earth, review the status of the Gaia theory, introduce potentially relevant concepts from complexity theory, then try to apply them to Gaia. We consider whether Gaia is a complex adaptive system (CAS) in terms of its behaviour and suggest that the system is self-organizing but does not reside in a critical state. Gaia has supported abundant life for most of the last 3.8 Gyr. Large perturbations have occasionally suppressed life but the system has always recovered without losing the capacity for large-scale free energy capture and recycling of essential elements. To illustrate how complexity theory can help us understand the emergence of planetary-scale order, we present a simple cellular automata (CA) model of the imaginary planet Daisyworld. This exhibits emergent self-regulation as a consequence of feedback coupling between life and its environment. Local spatial interaction, which was absent from the original model, can destabilize the system by generating bifurcation regimes. Variation and natural selection tend to remove this instability. With mutation in the model system, it exhibits self-organizing adaptive behaviour in its response to forcing. We close by suggesting how artificial life ('Alife') techniques may enable more comprehensive feasibility tests of Gaia.
Full Text
The Full Text of this article is available as a PDF (496.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez L. W., Alvarez W., Asaro F., Michel H. V. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980 Jun 6;208(4448):1095–1108. doi: 10.1126/science.208.4448.1095. [DOI] [PubMed] [Google Scholar]
- Bak P, Sneppen K. Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett. 1993 Dec 13;71(24):4083–4086. doi: 10.1103/PhysRevLett.71.4083. [DOI] [PubMed] [Google Scholar]
- Bak P, Tang C, Wiesenfeld K. Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett. 1987 Jul 27;59(4):381–384. doi: 10.1103/PhysRevLett.59.381. [DOI] [PubMed] [Google Scholar]
- D'Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M. Organic carbon fluxes and ecological recovery from the cretaceous-tertiary mass extinction . Science. 1998 Oct 9;282(5387):276–279. doi: 10.1126/science.282.5387.276. [DOI] [PubMed] [Google Scholar]
- De Marais D. J. Evolution. When did photosynthesis emerge on Earth? Science. 2000 Sep 8;289(5485):1703–1705. [PubMed] [Google Scholar]
- Di Paolo E. A. Ecological symmetry breaking can favour the evolution of altruism in an action-response game. J Theor Biol. 2000 Mar 21;203(2):135–152. doi: 10.1006/jtbi.2000.1078. [DOI] [PubMed] [Google Scholar]
- Downing K., Zvirinsky P. The simulated evolution of biochemical guilds: reconciling Gaia theory and natural selection. Artif Life. 1999 Fall;5(4):291–318. doi: 10.1162/106454699568791. [DOI] [PubMed] [Google Scholar]
- Han T. M., Runnegar B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science. 1992 Jul 10;257(5067):232–235. doi: 10.1126/science.1631544. [DOI] [PubMed] [Google Scholar]
- Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. A neoproterozoic snowball earth . Science. 1998 Aug 28;281(5381):1342–1346. doi: 10.1126/science.281.5381.1342. [DOI] [PubMed] [Google Scholar]
- Hyde W. T., Crowley T. J., Baum S. K., Peltier W. R. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model. Nature. 2000 May 25;405(6785):425–429. doi: 10.1038/35013005. [DOI] [PubMed] [Google Scholar]
- Imshenetsky A. A., Lysenko S. V., Kazakov G. A. Upper boundary of the biosphere. Appl Environ Microbiol. 1978 Jan;35(1):1–5. doi: 10.1128/aem.35.1.1-5.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasting J. F. Box models for the evolution of atmospheric oxygen: an update. Glob Planet Change. 1991;97:125–131. [PubMed] [Google Scholar]
- Koeslag J. H., Saunders P. T., Wessels J. A. Glucose homeostasis with infinite gain: further lessons from the Daisyworld parable? J Endocrinol. 1997 Aug;154(2):187–192. doi: 10.1677/joe.0.1540187. [DOI] [PubMed] [Google Scholar]
- Lenton T. M. Gaia and natural selection. Nature. 1998 Jul 30;394(6692):439–447. doi: 10.1038/28792. [DOI] [PubMed] [Google Scholar]
- Lenton T. M., Lovelock J. E. Daisyworld is Darwinian: constraints on adaptation are important for planetary self-regulation. J Theor Biol. 2000 Sep 7;206(1):109–114. doi: 10.1006/jtbi.2000.2105. [DOI] [PubMed] [Google Scholar]
- Longhurst A. Too intelligent for our own good. Nature. 1998 Sep 3;395(6697):9–9. doi: 10.1038/25581. [DOI] [PubMed] [Google Scholar]
- Mojzsis S. J., Arrhenius G., McKeegan K. D., Harrison T. M., Nutman A. P., Friend C. R. Evidence for life on Earth before 3,800 million years ago. Nature. 1996 Nov 7;384(6604):55–59. doi: 10.1038/384055a0. [DOI] [PubMed] [Google Scholar]
- Newman M. E. A model of mass extinction. J Theor Biol. 1997 Dec 7;189(3):235–252. doi: 10.1006/jtbi.1997.0508. [DOI] [PubMed] [Google Scholar]
- doi: 10.1098/rstb.1998.0192. [DOI] [PMC free article] [Google Scholar]
- Roberston D., Robinson J. Darwinian Daisyworld. J Theor Biol. 1998 Nov 7;195(1):129–134. doi: 10.1006/jtbi.1998.0799. [DOI] [PubMed] [Google Scholar]
- Sagan C., Thompson W. R., Carlson R., Gurnett D., Hord C. A search for life on Earth from the Galileo spacecraft. Nature. 1993 Oct 21;365(6448):715–721. doi: 10.1038/365715a0. [DOI] [PubMed] [Google Scholar]
- Saunders P. T. Evolution without natural selection: further implications of the daisyworld parable. J Theor Biol. 1994 Feb 21;166(4):365–373. doi: 10.1006/jtbi.1994.1033. [DOI] [PubMed] [Google Scholar]
- Saunders P. T., Koeslag J. H., Wessels J. A. Integral rein control in physiology. J Theor Biol. 1998 Sep 21;194(2):163–173. doi: 10.1006/jtbi.1998.0746. [DOI] [PubMed] [Google Scholar]
- Walker J. C. Was the Archaean biosphere upside down? Nature. 1987 Oct 22;329:710–712. doi: 10.1038/329710a0. [DOI] [PubMed] [Google Scholar]
