Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 May 29;357(1421):619–626. doi: 10.1098/rstb.2001.0993

The fractal nature of nature: power laws, ecological complexity and biodiversity.

James H Brown 1, Vijay K Gupta 1, Bai-Lian Li 1, Bruce T Milne 1, Carla Restrepo 1, Geoffrey B West 1
PMCID: PMC1692973  PMID: 12079523

Abstract

Underlying the diversity of life and the complexity of ecology is order that reflects the operation of fundamental physical and biological processes. Power laws describe empirical scaling relationships that are emergent quantitative features of biodiversity. These features are patterns of structure or dynamics that are self-similar or fractal-like over many orders of magnitude. Power laws allow extrapolation and prediction over a wide range of scales. Some appear to be universal, occurring in virtually all taxa of organisms and types of environments. They offer clues to underlying mechanisms that powerfully constrain biodiversity. We describe recent progress and future prospects for understanding the mechanisms that generate these power laws, and for explaining the diversity of species and complexity of ecosystems in terms of fundamental principles of physical and biological science.

Full Text

The Full Text of this article is available as a PDF (222.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burlando B. The fractal geometry of evolution. J Theor Biol. 1993 Jul 21;163(2):161–172. doi: 10.1006/jtbi.1993.1114. [DOI] [PubMed] [Google Scholar]
  2. Enquist B. J., Niklas K. J. Invariant scaling relations across tree-dominated communities. Nature. 2001 Apr 5;410(6829):655–660. doi: 10.1038/35070500. [DOI] [PubMed] [Google Scholar]
  3. Harte J, Kinzig A, Green J. Self-similarity in the distribution and abundance of species . Science. 1999 Apr 9;284(5412):334–336. doi: 10.1126/science.284.5412.334. [DOI] [PubMed] [Google Scholar]
  4. Koehl M. A. Fluid flow through hair-bearing appendages: feeding, smelling and swimming at low and intermediate Reynolds numbers. Symp Soc Exp Biol. 1995;49:157–182. [PubMed] [Google Scholar]
  5. Kosslyn S. M., Pascual-Leone A., Felician O., Camposano S., Keenan J. P., Thompson W. L., Ganis G., Sukel K. E., Alpert N. M. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science. 1999 Apr 2;284(5411):167–170. doi: 10.1126/science.284.5411.167. [DOI] [PubMed] [Google Scholar]
  6. Maritan A, Colaiori F, Flammini A, Cieplak M, Banavar JR. Universality Classes of Optimal Channel Networks. Science. 1996 May 17;272(5264):984–986. doi: 10.1126/science.272.5264.984. [DOI] [PubMed] [Google Scholar]
  7. Ritchie M. E., Olff H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature. 1999 Aug 5;400(6744):557–560. doi: 10.1038/23010. [DOI] [PubMed] [Google Scholar]
  8. Solé RV, Manrubia SC, Benton M, Kauffman S, Bak P. Criticality and scaling in evolutionary ecology. Trends Ecol Evol. 1999 Apr;14(4):156–160. doi: 10.1016/s0169-5347(98)01518-3. [DOI] [PubMed] [Google Scholar]
  9. Ulanowicz R. E., Wolff W. F. Ecosystem flow networks: loaded dice? Math Biosci. 1991 Feb;103(1):45–68. doi: 10.1016/0025-5564(91)90090-6. [DOI] [PubMed] [Google Scholar]
  10. West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology. Science. 1997 Apr 4;276(5309):122–126. doi: 10.1126/science.276.5309.122. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES