Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jun 29;357(1422):791–798. doi: 10.1098/rstb.2002.1086

Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins.

Patrick J Hussey 1, Ellen G Allwood 1, Andrei P Smertenko 1
PMCID: PMC1692981  PMID: 12079674

Abstract

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.

Full Text

The Full Text of this article is available as a PDF (965.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa H., Sutoh K., Yahara I. Overexpression of cofilin stimulates bundling of actin filaments, membrane ruffling, and cell movement in Dictyostelium. J Cell Biol. 1996 Feb;132(3):335–344. doi: 10.1083/jcb.132.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allwood E. G., Smertenko A. P., Hussey P. J. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Lett. 2001 Jun 15;499(1-2):97–100. doi: 10.1016/s0014-5793(01)02528-5. [DOI] [PubMed] [Google Scholar]
  3. Amberg D. C., Basart E., Botstein D. Defining protein interactions with yeast actin in vivo. Nat Struct Biol. 1995 Jan;2(1):28–35. doi: 10.1038/nsb0195-28. [DOI] [PubMed] [Google Scholar]
  4. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature. 1998 Jun 25;393(6687):805–809. doi: 10.1038/31729. [DOI] [PubMed] [Google Scholar]
  5. Ayscough K. R. In vivo functions of actin-binding proteins. Curr Opin Cell Biol. 1998 Feb;10(1):102–111. doi: 10.1016/s0955-0674(98)80092-6. [DOI] [PubMed] [Google Scholar]
  6. Bamburg J. R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230. doi: 10.1146/annurev.cellbio.15.1.185. [DOI] [PubMed] [Google Scholar]
  7. Bowman G. D., Nodelman I. M., Hong Y., Chua N. H., Lindberg U., Schutt C. E. A comparative structural analysis of the ADF/cofilin family. Proteins. 2000 Nov 15;41(3):374–384. doi: 10.1002/1097-0134(20001115)41:3<374::aid-prot90>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  8. Carlier M. F. Control of actin dynamics. Curr Opin Cell Biol. 1998 Feb;10(1):45–51. doi: 10.1016/s0955-0674(98)80085-9. [DOI] [PubMed] [Google Scholar]
  9. Carlier M. F., Laurent V., Santolini J., Melki R., Didry D., Xia G. X., Hong Y., Chua N. H., Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997 Mar 24;136(6):1307–1322. doi: 10.1083/jcb.136.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen H., Bernstein B. W., Bamburg J. R. Regulating actin-filament dynamics in vivo. Trends Biochem Sci. 2000 Jan;25(1):19–23. doi: 10.1016/s0968-0004(99)01511-x. [DOI] [PubMed] [Google Scholar]
  11. Clore A. M., Dannenhoffer J. M., Larkins B. A. EF-1[alpha] Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endosperm Cells. Plant Cell. 1996 Nov;8(11):2003–2014. doi: 10.1105/tpc.8.11.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dong C. H., Kost B., Xia G., Chua N. H. Molecular identification and characterization of the Arabidopsis AtADF1, AtADFS and AtADF6 genes. Plant Mol Biol. 2001 Mar;45(5):517–527. doi: 10.1023/a:1010687911374. [DOI] [PubMed] [Google Scholar]
  13. Dong C. H., Xia G. X., Hong Y., Ramachandran S., Kost B., Chua N. H. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell. 2001 Jun;13(6):1333–1346. doi: 10.1105/tpc.13.6.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gungabissoon R. A., Khan S., Hussey P. J., Maciver S. K. Interaction of elongation factor 1alpha from Zea mays (ZmEF-1alpha) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cell Motil Cytoskeleton. 2001 Jun;49(2):104–111. doi: 10.1002/cm.1024. [DOI] [PubMed] [Google Scholar]
  15. Hu S., Brady S. R., Kovar D. R., Staiger C. J., Clark G. B., Roux S. J., Muday G. K. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography. Plant J. 2000 Oct;24(1):127–137. doi: 10.1046/j.1365-313x.2000.00852.x. [DOI] [PubMed] [Google Scholar]
  16. Igarashi H., Orii H., Mori H., Shimmen T., Sonobe S. Isolation of a novel 190 kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol. 2000 Aug;41(8):920–931. doi: 10.1093/pcp/pcd015. [DOI] [PubMed] [Google Scholar]
  17. Iida K., Yahara I. Cooperation of two actin-binding proteins, cofilin and Aip1, in Saccharomyces cerevisiae. Genes Cells. 1999 Jan;4(1):21–32. doi: 10.1046/j.1365-2443.1999.00235.x. [DOI] [PubMed] [Google Scholar]
  18. Jiang C. J., Weeds A. G., Hussey P. J. The maize actin-depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J. 1997 Nov;12(5):1035–1043. doi: 10.1046/j.1365-313x.1997.12051035.x. [DOI] [PubMed] [Google Scholar]
  19. Jiang C. J., Weeds A. G., Khan S., Hussey P. J. F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF). Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9973–9978. doi: 10.1073/pnas.94.18.9973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim S. R., Kim Y., An G. Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol. 1993 Jan;21(1):39–45. doi: 10.1007/BF00039616. [DOI] [PubMed] [Google Scholar]
  21. Lopez I., Anthony R. G., Maciver S. K., Jiang C. J., Khan S., Weeds A. G., Hussey P. J. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7415–7420. doi: 10.1073/pnas.93.14.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maciver S. K. How ADF/cofilin depolymerizes actin filaments. Curr Opin Cell Biol. 1998 Feb;10(1):140–144. doi: 10.1016/s0955-0674(98)80097-5. [DOI] [PubMed] [Google Scholar]
  23. Maciver S. K., Pope B. J., Whytock S., Weeds A. G. The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. Eur J Biochem. 1998 Sep 1;256(2):388–397. doi: 10.1046/j.1432-1327.1998.2560388.x. [DOI] [PubMed] [Google Scholar]
  24. Maciver S. K., Wachsstock D. H., Schwarz W. H., Pollard T. D. The actin filament severing protein actophorin promotes the formation of rigid bundles of actin filaments crosslinked with alpha-actinin. J Cell Biol. 1991 Dec;115(6):1621–1628. doi: 10.1083/jcb.115.6.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McGough A., Pope B., Chiu W., Weeds A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J Cell Biol. 1997 Aug 25;138(4):771–781. doi: 10.1083/jcb.138.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore R. C., Cyr R. J. Association between elongation factor-1alpha and microtubules in vivo is domain dependent and conditional. Cell Motil Cytoskeleton. 2000 Apr;45(4):279–292. doi: 10.1002/(SICI)1097-0169(200004)45:4<279::AID-CM4>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  27. Moriyama K., Iida K., Yahara I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells. 1996 Jan;1(1):73–86. doi: 10.1046/j.1365-2443.1996.05005.x. [DOI] [PubMed] [Google Scholar]
  28. Mun J. H., Yu H. J., Lee H. S., Kwon Y. M., Lee J. S., Lee I., Kim S. G. Two closely related cDNAs encoding actin-depolymerizing factors of petunia are mainly expressed in vegetative tissues. Gene. 2000 Oct 31;257(2):167–176. doi: 10.1016/s0378-1119(00)00412-1. [DOI] [PubMed] [Google Scholar]
  29. Nakayasu T., Yokota E., Shimmen T. Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Commun. 1998 Aug 10;249(1):61–65. doi: 10.1006/bbrc.1998.9088. [DOI] [PubMed] [Google Scholar]
  30. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  31. Okada K., Obinata T., Abe H. XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci. 1999 May;112(Pt 10):1553–1565. doi: 10.1242/jcs.112.10.1553. [DOI] [PubMed] [Google Scholar]
  32. Ono S. The Caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. J Cell Biol. 2001 Mar 19;152(6):1313–1319. doi: 10.1083/jcb.152.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ouellet F., Carpentier E., Cope M. J., Monroy A. F., Sarhan F. Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiol. 2001 Jan;125(1):360–368. doi: 10.1104/pp.125.1.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pope B. J., Gonsior S. M., Yeoh S., McGough A., Weeds A. G. Uncoupling actin filament fragmentation by cofilin from increased subunit turnover. J Mol Biol. 2000 May 12;298(4):649–661. doi: 10.1006/jmbi.2000.3688. [DOI] [PubMed] [Google Scholar]
  35. Rodal A. A., Tetreault J. W., Lappalainen P., Drubin D. G., Amberg D. C. Aip1p interacts with cofilin to disassemble actin filaments. J Cell Biol. 1999 Jun 14;145(6):1251–1264. doi: 10.1083/jcb.145.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rozycka M., Khan S., Lopez I., Greenland A. J., Hussey P. J. A Zea mays pollen cDNA encoding a putative actin-depolymerizing factor. Plant Physiol. 1995 Mar;107(3):1011–1012. doi: 10.1104/pp.107.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smertenko A. P., Allwood E. G., Khan S., Jiang C. J., Maciver S. K., Weeds A. G., Hussey P. J. Interaction of pollen-specific actin-depolymerizing factor with actin. Plant J. 2001 Jan;25(2):203–212. doi: 10.1046/j.1365-313x.2001.00954.x. [DOI] [PubMed] [Google Scholar]
  38. Smertenko A. P., Jiang C. J., Simmons N. J., Weeds A. G., Davies D. R., Hussey P. J. Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J. 1998 Apr;14(2):187–193. doi: 10.1046/j.1365-313x.1998.00107.x. [DOI] [PubMed] [Google Scholar]
  39. Trewavas A. Le calcium, C'est la vie: calcium makes waves . Plant Physiol. 1999 May;120(1):1–6. doi: 10.1104/pp.120.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang N., Higuchi O., Ohashi K., Nagata K., Wada A., Kangawa K., Nishida E., Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature. 1998 Jun 25;393(6687):809–812. doi: 10.1038/31735. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES