Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jun 29;357(1422):767–775. doi: 10.1098/rstb.2002.1094

Control of plant cytokinesis by an NPK1-mediated mitogen-activated protein kinase cascade.

Takashi Soyano 1, Masaki Ishikawa 1, Ryuichi Nishihama 1, Satoshi Araki 1, Mayumi Ito 1, Masaki Ito 1, Yasunori Machida 1
PMCID: PMC1692986  PMID: 12079672

Abstract

Cytokinesis is the last essential step in the distribution of genetic information to daughter cells and partition of the cytoplasm. In plant cells, various proteins have been found in the phragmoplast, which corresponds to the cytokinetic apparatus, and in the cell plate, which corresponds to a new cross wall, but our understanding of the functions of these proteins in cytokinesis remains incomplete. Reverse genetic analysis of NPK1 MAPKKK (nucleus- and phragmoplast-localized protein kinase 1 mitogen-activated protein kinase kinase kinase) and investigations of factors that might be functionally related to NPK1 have helped to clarify new aspects of the mechanisms of cytokinesis in plant cells. In this review, we summarize the evidence for the involvement of NPK1 in cytokinesis. We also describe the characteristics of a kinesin-like protein and the homologue of a mitogen-activated protein kinase that we identified recently, and we discuss possible relationships among these proteins in cytokinesis.

Full Text

The Full Text of this article is available as a PDF (562.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya U., Mallabiabarrena A., Acharya J. K., Malhotra V. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell. 1998 Jan 23;92(2):183–192. doi: 10.1016/s0092-8674(00)80913-7. [DOI] [PubMed] [Google Scholar]
  2. Adams R. R., Tavares A. A., Salzberg A., Bellen H. J., Glover D. M. pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev. 1998 May 15;12(10):1483–1494. doi: 10.1101/gad.12.10.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Althoefer H., Schleiffer A., Wassmann K., Nordheim A., Ammerer G. Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Nov;15(11):5917–5928. doi: 10.1128/mcb.15.11.5917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aoyama T., Chua N. H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 1997 Mar;11(3):605–612. doi: 10.1046/j.1365-313x.1997.11030605.x. [DOI] [PubMed] [Google Scholar]
  5. Assaad F. F., Huet Y., Mayer U., Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol. 2001 Feb 5;152(3):531–543. doi: 10.1083/jcb.152.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banno H., Hirano K., Nakamura T., Irie K., Nomoto S., Matsumoto K., Machida Y. NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol Cell Biol. 1993 Aug;13(8):4745–4752. doi: 10.1128/mcb.13.8.4745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bischoff J. R., Plowman G. D. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 1999 Nov;9(11):454–459. doi: 10.1016/s0962-8924(99)01658-x. [DOI] [PubMed] [Google Scholar]
  8. Bogre L., Ligterink W., Meskiene I., Barker P. J., Heberle-Bors E., Huskisson N. S., Hirt H. Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway. Plant Cell. 1997 Jan;9(1):75–83. doi: 10.1105/tpc.9.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Breeden L. L. Cyclin transcription: Timing is everything. Curr Biol. 2000 Aug 24;10(16):R586–R588. doi: 10.1016/s0960-9822(00)00634-5. [DOI] [PubMed] [Google Scholar]
  10. Bögre L., Calderini O., Binarova P., Mattauch M., Till S., Kiegerl S., Jonak C., Pollaschek C., Barker P., Huskisson N. S. A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell. 1999 Jan;11(1):101–113. [PMC free article] [PubMed] [Google Scholar]
  11. Calderini O., Bögre L., Vicente O., Binarova P., Heberle-Bors E., Wilson C. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci. 1998 Oct;111(Pt 20):3091–3100. doi: 10.1242/jcs.111.20.3091. [DOI] [PubMed] [Google Scholar]
  12. Edelmann H. M., Kühne C., Petritsch C., Ballou L. M. Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts. J Biol Chem. 1996 Jan 12;271(2):963–971. doi: 10.1074/jbc.271.2.963. [DOI] [PubMed] [Google Scholar]
  13. Farrar M. A., Alberol-Ila J., Perlmutter R. M. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature. 1996 Sep 12;383(6596):178–181. doi: 10.1038/383178a0. [DOI] [PubMed] [Google Scholar]
  14. Field C., Li R., Oegema K. Cytokinesis in eukaryotes: a mechanistic comparison. Curr Opin Cell Biol. 1999 Feb;11(1):68–80. doi: 10.1016/s0955-0674(99)80009-x. [DOI] [PubMed] [Google Scholar]
  15. Frye C. A., Tang D., Innes R. W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):373–378. doi: 10.1073/pnas.98.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glover D. M., Hagan I. M., Tavares A. A. Polo-like kinases: a team that plays throughout mitosis. Genes Dev. 1998 Dec 15;12(24):3777–3787. doi: 10.1101/gad.12.24.3777. [DOI] [PubMed] [Google Scholar]
  17. Graves L. M., Guy H. I., Kozlowski P., Huang M., Lazarowski E., Pope R. M., Collins M. A., Dahlstrand E. N., Earp H. S., 3rd, Evans D. R. Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature. 2000 Jan 20;403(6767):328–332. doi: 10.1038/35002111. [DOI] [PubMed] [Google Scholar]
  18. Hales K. G., Bi E., Wu J. Q., Adam J. C., Yu I. C., Pringle J. R. Cytokinesis: an emerging unified theory for eukaryotes? Curr Opin Cell Biol. 1999 Dec;11(6):717–725. doi: 10.1016/s0955-0674(99)00042-3. [DOI] [PubMed] [Google Scholar]
  19. Heese M., Mayer U., Jürgens G. Cytokinesis in flowering plants: cellular process and developmental integration. Curr Opin Plant Biol. 1998 Dec;1(6):486–491. doi: 10.1016/s1369-5266(98)80040-x. [DOI] [PubMed] [Google Scholar]
  20. Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell. 1995 Jan 27;80(2):187–197. doi: 10.1016/0092-8674(95)90402-6. [DOI] [PubMed] [Google Scholar]
  21. Huang Y., Li H., Gupta R., Morris P. C., Luan S., Kieber J. J. ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol. 2000 Apr;122(4):1301–1310. doi: 10.1104/pp.122.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ichimura K., Mizoguchi T., Yoshida R., Yuasa T., Shinozaki K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 2000 Dec;24(5):655–665. doi: 10.1046/j.1365-313x.2000.00913.x. [DOI] [PubMed] [Google Scholar]
  23. Irie K., Gotoh Y., Yashar B. M., Errede B., Nishida E., Matsumoto K. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science. 1994 Sep 16;265(5179):1716–1719. doi: 10.1126/science.8085159. [DOI] [PubMed] [Google Scholar]
  24. Ito M., Araki S., Matsunaga S., Itoh T., Nishihama R., Machida Y., Doonan J. H., Watanabe A. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell. 2001 Aug;13(8):1891–1905. doi: 10.1105/TPC.010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ito M., Iwase M., Kodama H., Lavisse P., Komamine A., Nishihama R., Machida Y., Watanabe A. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell. 1998 Mar;10(3):331–341. doi: 10.1105/tpc.10.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jantsch-Plunger V., Glotzer M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol. 1999 Jul 15;9(14):738–745. doi: 10.1016/s0960-9822(99)80333-9. [DOI] [PubMed] [Google Scholar]
  27. Jouannic S., Hamal A., Leprince A. S., Tregear J. W., Kreis M., Henry Y. Plant MAP kinase kinase kinases structure, classification and evolution. Gene. 1999 Jun 11;233(1-2):1–11. doi: 10.1016/s0378-1119(99)00152-3. [DOI] [PubMed] [Google Scholar]
  28. Kiegerl S., Cardinale F., Siligan C., Gross A., Baudouin E., Liwosz A., Eklöf S., Till S., Bögre L., Hirt H. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell. 2000 Nov;12(11):2247–2258. doi: 10.1105/tpc.12.11.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee K. S., Yuan Y. L., Kuriyama R., Erikson R. L. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol. 1995 Dec;15(12):7143–7151. doi: 10.1128/mcb.15.12.7143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ligterink W., Kroj T., zur Nieden U., Hirt H., Scheel D. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science. 1997 Jun 27;276(5321):2054–2057. doi: 10.1126/science.276.5321.2054. [DOI] [PubMed] [Google Scholar]
  31. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  32. Luo Z., Tzivion G., Belshaw P. J., Vavvas D., Marshall M., Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 1996 Sep 12;383(6596):181–185. doi: 10.1038/383181a0. [DOI] [PubMed] [Google Scholar]
  33. Maher M., Cong F., Kindelberger D., Nasmyth K., Dalton S. Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol Cell Biol. 1995 Jun;15(6):3129–3137. doi: 10.1128/mcb.15.6.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Minshull J., Sun H., Tonks N. K., Murray A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 1994 Nov 4;79(3):475–486. doi: 10.1016/0092-8674(94)90256-9. [DOI] [PubMed] [Google Scholar]
  35. Mizoguchi T., Ichimura K., Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotechnol. 1997 Jan;15(1):15–19. doi: 10.1016/S0167-7799(96)10074-3. [DOI] [PubMed] [Google Scholar]
  36. Munnik T, Ligterink W, Meskiene I, I, Calderini O, Beyerly J, Musgrave A, Hirt H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J. 1999 Nov;20(4):381–388. doi: 10.1046/j.1365-313x.1999.00610.x. [DOI] [PubMed] [Google Scholar]
  37. Müller C., Yang R., Idos G., Tidow N., Diederichs S., Koch O. M., Verbeek W., Bender T. P., Koeffler H. P. c-myb transactivates the human cyclin A1 promoter and induces cyclin A1 gene expression. Blood. 1999 Dec 15;94(12):4255–4262. [PubMed] [Google Scholar]
  38. Nakashima M., Hirano K., Nakashima S., Banno H., Nishihama R., Machida Y. The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol. 1998 Jul;39(7):690–700. doi: 10.1093/oxfordjournals.pcp.a029423. [DOI] [PubMed] [Google Scholar]
  39. Nishihama R., Banno H., Shibata W., Hirano K., Nakashima M., Usami S., Machida Y. Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol. 1995 Jul;36(5):749–757. doi: 10.1093/oxfordjournals.pcp.a078818. [DOI] [PubMed] [Google Scholar]
  40. Nishihama R., Ishikawa M., Araki S., Soyano T., Asada T., Machida Y. The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev. 2001 Feb 1;15(3):352–363. doi: 10.1101/gad.863701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nishihama Ryuichi, Soyano Takashi, Ishikawa Masaki, Araki Satoshi, Tanaka Hirokazu, Asada Tetsuhiro, Irie Kenji, Ito Mayumi, Terada Mizuya, Banno Hiroharu. Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell. 2002 Apr 5;109(1):87–99. doi: 10.1016/s0092-8674(02)00691-8. [DOI] [PubMed] [Google Scholar]
  42. Pagès G., Lenormand P., L'Allemain G., Chambard J. C., Meloche S., Pouysségur J. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8319–8323. doi: 10.1073/pnas.90.18.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H. B., Lacy M., Austin M. J., Parker J. E. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell. 2000 Dec 22;103(7):1111–1120. doi: 10.1016/s0092-8674(00)00213-0. [DOI] [PubMed] [Google Scholar]
  44. Posas F., Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998 Mar 2;17(5):1385–1394. doi: 10.1093/emboj/17.5.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Raich W. B., Moran A. N., Rothman J. H., Hardin J. Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol Biol Cell. 1998 Aug;9(8):2037–2049. doi: 10.1091/mbc.9.8.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Robinson M. J., Cobb M. H. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997 Apr;9(2):180–186. doi: 10.1016/s0955-0674(97)80061-0. [DOI] [PubMed] [Google Scholar]
  47. Romeis T., Piedras P., Zhang S., Klessig D. F., Hirt H., Jones J. D. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell. 1999 Feb;11(2):273–287. doi: 10.1105/tpc.11.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Samuels A. L., Giddings T. H., Jr, Staehelin L. A. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol. 1995 Sep;130(6):1345–1357. doi: 10.1083/jcb.130.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995 Dec 22;270(5244):1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
  50. Severson A. F., Hamill D. R., Carter J. C., Schumacher J., Bowerman B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol. 2000 Oct 5;10(19):1162–1171. doi: 10.1016/s0960-9822(00)00715-6. [DOI] [PubMed] [Google Scholar]
  51. Shapiro P. S., Vaisberg E., Hunt A. J., Tolwinski N. S., Whalen A. M., McIntosh J. R., Ahn N. G. Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen. J Cell Biol. 1998 Sep 21;142(6):1533–1545. doi: 10.1083/jcb.142.6.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shibuya H., Yamaguchi K., Shirakabe K., Tonegawa A., Gotoh Y., Ueno N., Irie K., Nishida E., Matsumoto K. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science. 1996 May 24;272(5265):1179–1182. doi: 10.1126/science.272.5265.1179. [DOI] [PubMed] [Google Scholar]
  53. Smith L. G. Divide and conquer: cytokinesis in plant cells. Curr Opin Plant Biol. 1999 Dec;2(6):447–453. doi: 10.1016/s1369-5266(99)00022-9. [DOI] [PubMed] [Google Scholar]
  54. Staehelin L. A., Hepler P. K. Cytokinesis in higher plants. Cell. 1996 Mar 22;84(6):821–824. doi: 10.1016/s0092-8674(00)81060-0. [DOI] [PubMed] [Google Scholar]
  55. Suzuki K., Shinshi H. Transient Activation and Tyrosine Phosphorylation of a Protein Kinase in Tobacco Cells Treated with a Fungal Elicitor. Plant Cell. 1995 May;7(5):639–647. doi: 10.1105/tpc.7.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Takekawa M., Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998 Nov 13;95(4):521–530. doi: 10.1016/s0092-8674(00)81619-0. [DOI] [PubMed] [Google Scholar]
  57. Takenaka K., Moriguchi T., Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science. 1998 Apr 24;280(5363):599–602. doi: 10.1126/science.280.5363.599. [DOI] [PubMed] [Google Scholar]
  58. Usami S., Banno H., Ito Y., Nishihama R., Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8660–8664. doi: 10.1073/pnas.92.19.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Venturelli D., Travali S., Calabretta B. Inhibition of T-cell proliferation by a MYB antisense oligomer is accompanied by selective down-regulation of DNA polymerase alpha expression. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5963–5967. doi: 10.1073/pnas.87.15.5963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Widmann C., Gibson S., Jarpe M. B., Johnson G. L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999 Jan;79(1):143–180. doi: 10.1152/physrev.1999.79.1.143. [DOI] [PubMed] [Google Scholar]
  61. Yang K. Y., Liu Y., Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):741–746. doi: 10.1073/pnas.98.2.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yasuhara H., Shibaoka H. Inhibition of cell-plate formation by brefeldin A inhibited the depolymerization of microtubules in the central region of the phragmoplast. Plant Cell Physiol. 2000 Mar;41(3):300–310. doi: 10.1093/pcp/41.3.300. [DOI] [PubMed] [Google Scholar]
  63. Zecevic M., Catling A. D., Eblen S. T., Renzi L., Hittle J. C., Yen T. J., Gorbsky G. J., Weber M. J. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol. 1998 Sep 21;142(6):1547–1558. doi: 10.1083/jcb.142.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zhang S., Du H., Klessig D. F. Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell. 1998 Mar;10(3):435–450. doi: 10.1105/tpc.10.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zhang S., Klessig D. F. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7433–7438. doi: 10.1073/pnas.95.13.7433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zhang S., Klessig D. F. The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7225–7230. doi: 10.1073/pnas.95.12.7225. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES