Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Jul 29;357(1423):895–907. doi: 10.1098/rstb.2002.1078

Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis.

Michael H W Weber 1, Mohamed A Marahiel 1
PMCID: PMC1693001  PMID: 12171653

Abstract

All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.

Full Text

The Full Text of this article is available as a PDF (313.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar P. S., Cronan J. E., Jr, de Mendoza D. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol. 1998 Apr;180(8):2194–2200. doi: 10.1128/jb.180.8.2194-2200.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 2001 Apr 2;20(7):1681–1691. doi: 10.1093/emboj/20.7.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aguilar P. S., Lopez P., de Mendoza D. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol. 1999 Nov;181(22):7028–7033. doi: 10.1128/jb.181.22.7028-7033.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Altuvia S., Kornitzer D., Teff D., Oppenheim A. B. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol. 1989 Nov 20;210(2):265–280. doi: 10.1016/0022-2836(89)90329-x. [DOI] [PubMed] [Google Scholar]
  5. Antelmann H., Engelmann S., Schmid R., Sorokin A., Lapidus A., Hecker M. Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol. 1997 Dec;179(23):7251–7256. doi: 10.1128/jb.179.23.7251-7256.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bae W., Xia B., Inouye M., Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7784–7789. doi: 10.1073/pnas.97.14.7784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bishop D. G., Rutberg L., Samuelsson B. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem. 1967 Nov;2(4):448–453. doi: 10.1111/j.1432-1033.1967.tb00158.x. [DOI] [PubMed] [Google Scholar]
  8. Brandi A., Pon C. L., Gualerzi C. O. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie. 1994;76(10-11):1090–1098. doi: 10.1016/0300-9084(94)90035-3. [DOI] [PubMed] [Google Scholar]
  9. Broeze R. J., Solomon C. J., Pope D. H. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J Bacteriol. 1978 Jun;134(3):861–874. doi: 10.1128/jb.134.3.861-874.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carter A. P., Clemons W. M., Jr, Brodersen D. E., Morgan-Warren R. J., Hartsch T., Wimberly B. T., Ramakrishnan V. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science. 2001 Jan 19;291(5503):498–501. doi: 10.1126/science.1057766. [DOI] [PubMed] [Google Scholar]
  11. Cavicchioli R., Thomas T., Curmi P. M. Cold stress response in Archaea. Extremophiles. 2000 Dec;4(6):321–331. doi: 10.1007/s007920070001. [DOI] [PubMed] [Google Scholar]
  12. Cevc G. How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model. Biochemistry. 1991 Jul 23;30(29):7186–7193. doi: 10.1021/bi00243a021. [DOI] [PubMed] [Google Scholar]
  13. Charbonnier F., Erauso G., Barbeyron T., Prieur D., Forterre P. Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J Bacteriol. 1992 Oct;174(19):6103–6108. doi: 10.1128/jb.174.19.6103-6108.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen L., Helmann J. D. Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol. 1995 Oct;18(2):295–300. doi: 10.1111/j.1365-2958.1995.mmi_18020295.x. [DOI] [PubMed] [Google Scholar]
  15. Dammel C. S., Noller H. F. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev. 1995 Mar 1;9(5):626–637. doi: 10.1101/gad.9.5.626. [DOI] [PubMed] [Google Scholar]
  16. Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232. doi: 10.1146/annurev.biochem.66.1.199. [DOI] [PubMed] [Google Scholar]
  17. Duguet M. The helical repeat of DNA at high temperature. Nucleic Acids Res. 1993 Feb 11;21(3):463–468. doi: 10.1093/nar/21.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dunkley E. A., Jr, Clejan S., Krulwich T. A. Mutants of Bacillus species isolated on the basis of protonophore resistance are deficient in fatty acid desaturase activity. J Bacteriol. 1991 Dec;173(24):7750–7755. doi: 10.1128/jb.173.24.7750-7755.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dutta R., Qin L., Inouye M. Histidine kinases: diversity of domain organization. Mol Microbiol. 1999 Nov;34(4):633–640. doi: 10.1046/j.1365-2958.1999.01646.x. [DOI] [PubMed] [Google Scholar]
  20. Etchegaray J. P., Inouye M. CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. J Bacteriol. 1999 Mar;181(6):1827–1830. doi: 10.1128/jb.181.6.1827-1830.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fabret C., Feher V. A., Hoch J. A. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol. 1999 Apr;181(7):1975–1983. doi: 10.1128/jb.181.7.1975-1983.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fabret C., Hoch J. A. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol. 1998 Dec;180(23):6375–6383. doi: 10.1128/jb.180.23.6375-6383.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fang L., Jiang W., Bae W., Inouye M. Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol Microbiol. 1997 Jan;23(2):355–364. doi: 10.1046/j.1365-2958.1997.2351592.x. [DOI] [PubMed] [Google Scholar]
  24. Farewell A., Neidhardt F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 1998 Sep;180(17):4704–4710. doi: 10.1128/jb.180.17.4704-4710.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Friedman H., Lu P., Rich A. Temperature control of initiation of protein synthesis in Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):105–121. doi: 10.1016/0022-2836(71)90209-9. [DOI] [PubMed] [Google Scholar]
  26. Fujita J. Cold shock response in mammalian cells. J Mol Microbiol Biotechnol. 1999 Nov;1(2):243–255. [PubMed] [Google Scholar]
  27. Goldenberg D., Azar I., Oppenheim A. B., Brandi A., Pon C. L., Gualerzi C. O. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet. 1997 Oct;256(3):282–290. doi: 10.1007/s004380050571. [DOI] [PubMed] [Google Scholar]
  28. Grau R., Gardiol D., Glikin G. C., de Mendoza D. DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol Microbiol. 1994 Mar;11(5):933–941. doi: 10.1111/j.1365-2958.1994.tb00372.x. [DOI] [PubMed] [Google Scholar]
  29. Grau R., de Mendoza D. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol Microbiol. 1993 May;8(3):535–542. doi: 10.1111/j.1365-2958.1993.tb01598.x. [DOI] [PubMed] [Google Scholar]
  30. Graumann P. L., Marahiel M. A. A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci. 1998 Aug;23(8):286–290. doi: 10.1016/s0968-0004(98)01255-9. [DOI] [PubMed] [Google Scholar]
  31. Graumann P. L., Marahiel M. A. Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis. Arch Microbiol. 1999 Jan;171(2):135–138. doi: 10.1007/s002030050690. [DOI] [PubMed] [Google Scholar]
  32. Graumann P. L., Marahiel M. A. Cold shock response in Bacillus subtilis. J Mol Microbiol Biotechnol. 1999 Nov;1(2):203–209. [PubMed] [Google Scholar]
  33. Graumann P. L. SMC proteins in bacteria: condensation motors for chromosome segregation? Biochimie. 2001 Jan;83(1):53–59. doi: 10.1016/s0300-9084(00)01218-9. [DOI] [PubMed] [Google Scholar]
  34. Graumann P., Marahiel M. A. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides. FEBS Lett. 1994 Jan 31;338(2):157–160. doi: 10.1016/0014-5793(94)80355-2. [DOI] [PubMed] [Google Scholar]
  35. Graumann P., Schröder K., Schmid R., Marahiel M. A. Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol. 1996 Aug;178(15):4611–4619. doi: 10.1128/jb.178.15.4611-4619.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Graumann P., Wendrich T. M., Weber M. H., Schröder K., Marahiel M. A. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol. 1997 Aug;25(4):741–756. doi: 10.1046/j.1365-2958.1997.5121878.x. [DOI] [PubMed] [Google Scholar]
  37. Griffith J., Makhov A., Santiago-Lara L., Setlow P. Electron microscopic studies of the interaction between a Bacillus subtilis alpha/beta-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA, and induces negative supercoiling. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8224–8228. doi: 10.1073/pnas.91.17.8224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  39. Guy C. Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol. 1999 Nov;1(2):231–242. [PubMed] [Google Scholar]
  40. Hanna M. M., Liu K. Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J Mol Biol. 1998 Sep 18;282(2):227–239. doi: 10.1006/jmbi.1998.2005. [DOI] [PubMed] [Google Scholar]
  41. Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
  42. Hoch J. A. Two-component and phosphorelay signal transduction. Curr Opin Microbiol. 2000 Apr;3(2):165–170. doi: 10.1016/s1369-5274(00)00070-9. [DOI] [PubMed] [Google Scholar]
  43. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett. 1995 Sep 1;131(2):219–225. doi: 10.1111/j.1574-6968.1995.tb07780.x. [DOI] [PubMed] [Google Scholar]
  44. Hu K. H., Liu E., Dean K., Gingras M., DeGraff W., Trun N. J. Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics. 1996 Aug;143(4):1521–1532. doi: 10.1093/genetics/143.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hurme R., Berndt K. D., Normark S. J., Rhen M. A proteinaceous gene regulatory thermometer in Salmonella. Cell. 1997 Jul 11;90(1):55–64. doi: 10.1016/s0092-8674(00)80313-x. [DOI] [PubMed] [Google Scholar]
  46. Hébraud M., Potier P. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol. 1999 Nov;1(2):211–219. [PubMed] [Google Scholar]
  47. Ikehara K., Okada H., Maeda K., Ogura A., Sugae K. Accumulation of relA gene-independent ppGpp in Bacillus subtilis vegetative cells upon temperature shift-down. J Biochem. 1984 Mar;95(3):895–897. doi: 10.1093/oxfordjournals.jbchem.a134684. [DOI] [PubMed] [Google Scholar]
  48. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  49. Jiang W., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997 Jan 3;272(1):196–202. doi: 10.1074/jbc.272.1.196. [DOI] [PubMed] [Google Scholar]
  50. Jones P. G., Cashel M., Glaser G., Neidhardt F. C. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J Bacteriol. 1992 Jun;174(12):3903–3914. doi: 10.1128/jb.174.12.3903-3914.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Jones P. G., Inouye M. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol. 1996 Sep;21(6):1207–1218. doi: 10.1111/j.1365-2958.1996.tb02582.x. [DOI] [PubMed] [Google Scholar]
  52. Jones P. G., Krah R., Tafuri S. R., Wolffe A. P. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J Bacteriol. 1992 Sep;174(18):5798–5802. doi: 10.1128/jb.174.18.5798-5802.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Jones P. G., Mitta M., Kim Y., Jiang W., Inouye M. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):76–80. doi: 10.1073/pnas.93.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Jones P. G., VanBogelen R. A., Neidhardt F. C. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol. 1987 May;169(5):2092–2095. doi: 10.1128/jb.169.5.2092-2095.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kaan T., Jürgen B., Schweder T. Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet. 1999 Sep;262(2):351–354. doi: 10.1007/s004380051093. [DOI] [PubMed] [Google Scholar]
  56. Kaiser D., Losick R. How and why bacteria talk to each other. Cell. 1993 Jun 4;73(5):873–885. doi: 10.1016/0092-8674(93)90268-u. [DOI] [PubMed] [Google Scholar]
  57. Kandror O., Goldberg A. L. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4978–4981. doi: 10.1073/pnas.94.10.4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 1991 Jun;55(2):288–302. doi: 10.1128/mr.55.2.288-302.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kay A. C., Graffe M., Grunberg-Manago M. Purification and properties of two initiation factors from Bacillus stearothermophilus. Biochimie. 1976;58(1-2):183–199. doi: 10.1016/s0300-9084(76)80369-0. [DOI] [PubMed] [Google Scholar]
  60. Klein W., Weber M. H., Marahiel M. A. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol. 1999 Sep;181(17):5341–5349. doi: 10.1128/jb.181.17.5341-5349.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kremer W., Schuler B., Harrieder S., Geyer M., Gronwald W., Welker C., Jaenicke R., Kalbitzer H. R. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur J Biochem. 2001 May;268(9):2527–2539. doi: 10.1046/j.1432-1327.2001.02127.x. [DOI] [PubMed] [Google Scholar]
  62. Krispin O., Allmansberger R. Changes in DNA supertwist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):129–135. doi: 10.1111/j.1574-6968.1995.tb07926.x. [DOI] [PubMed] [Google Scholar]
  63. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  64. Köhler P., Marahiel M. A. Association of the histone-like protein HBsu with the nucleoid of Bacillus subtilis. J Bacteriol. 1997 Mar;179(6):2060–2064. doi: 10.1128/jb.179.6.2060-2064.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Landsman D. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res. 1992 Jun 11;20(11):2861–2864. doi: 10.1093/nar/20.11.2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Liu L. F., Wang J. C. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7024–7027. doi: 10.1073/pnas.84.20.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Lopez M. M., Makhatadze G. I. Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochim Biophys Acta. 2000 Jun 15;1479(1-2):196–202. doi: 10.1016/s0167-4838(00)00048-0. [DOI] [PubMed] [Google Scholar]
  68. Los D. A., Murata N. Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol. 1999 Nov;1(2):221–230. [PubMed] [Google Scholar]
  69. Los D. A., Murata N. Structure and expression of fatty acid desaturases. Biochim Biophys Acta. 1998 Oct 2;1394(1):3–15. doi: 10.1016/s0005-2760(98)00091-5. [DOI] [PubMed] [Google Scholar]
  70. Loshon C. A., Kraus P., Setlow B., Setlow P. Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J Bacteriol. 1997 Jan;179(1):272–275. doi: 10.1128/jb.179.1.272-275.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Lottering E. A., Streips U. N. Induction of cold shock proteins in Bacillus subtilis. Curr Microbiol. 1995 Apr;30(4):193–199. doi: 10.1007/BF00293633. [DOI] [PubMed] [Google Scholar]
  72. Mackow E. R., Chang F. N. Correlation between RNA synthesis and ppGpp content in Escherichia coli during temperature shifts. Mol Gen Genet. 1983;192(1-2):5–9. doi: 10.1007/BF00327639. [DOI] [PubMed] [Google Scholar]
  73. Makhatadze G. I., Marahiel M. A. Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Sci. 1994 Nov;3(11):2144–2147. doi: 10.1002/pro.5560031127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Marahiel M. A., Nakano M. M., Zuber P. Regulation of peptide antibiotic production in Bacillus. Mol Microbiol. 1993 Mar;7(5):631–636. doi: 10.1111/j.1365-2958.1993.tb01154.x. [DOI] [PubMed] [Google Scholar]
  75. Mascarenhas J., Weber M. H., Graumann P. L. Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription. EMBO Rep. 2001 Jul 19;2(8):685–689. doi: 10.1093/embo-reports/kve160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Massé E., Drolet M. R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol. 1999 Nov 26;294(2):321–332. doi: 10.1006/jmbi.1999.3264. [DOI] [PubMed] [Google Scholar]
  77. Mayr B., Kaplan T., Lechner S., Scherer S. Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol. 1996 May;178(10):2916–2925. doi: 10.1128/jb.178.10.2916-2925.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Mikulík K., Khanh-Hoang Q., Halada P., Bezousková S., Benada O., Bêhal V. Expression of the Csp protein family upon cold shock and production of tetracycline in Streptomyces aureofaciens. Biochem Biophys Res Commun. 1999 Nov 19;265(2):305–310. doi: 10.1006/bbrc.1999.1673. [DOI] [PubMed] [Google Scholar]
  79. Mitta M., Fang L., Inouye M. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol. 1997 Oct;26(2):321–335. doi: 10.1046/j.1365-2958.1997.5771943.x. [DOI] [PubMed] [Google Scholar]
  80. Mizushima T., Kataoka K., Ogata Y., Inoue R., Sekimizu K. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol. 1997 Jan;23(2):381–386. doi: 10.1046/j.1365-2958.1997.2181582.x. [DOI] [PubMed] [Google Scholar]
  81. Mueller U., Perl D., Schmid F. X., Heinemann U. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J Mol Biol. 2000 Apr 7;297(4):975–988. doi: 10.1006/jmbi.2000.3602. [DOI] [PubMed] [Google Scholar]
  82. Neuhaus K., Rapposch S., Francis K. P., Scherer S. Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol. 2000 Jun;182(11):3285–3288. doi: 10.1128/jb.182.11.3285-3288.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Newkirk K., Feng W., Jiang W., Tejero R., Emerson S. D., Inouye M., Montelione G. T. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5114–5118. doi: 10.1073/pnas.91.11.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Nishiyama S. I., Umemura T., Nara T., Homma M., Kawagishi I. Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol Microbiol. 1999 Apr;32(2):357–365. doi: 10.1046/j.1365-2958.1999.01355.x. [DOI] [PubMed] [Google Scholar]
  85. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  86. Pao C. C., Dyess B. T. Stringent control of RNA synthesis in the absence of guanosine 5'-diphosphate-3'-diphosphate. J Biol Chem. 1981 Mar 10;256(5):2252–2257. [PubMed] [Google Scholar]
  87. Phadtare S., Inouye M. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol Microbiol. 1999 Sep;33(5):1004–1014. doi: 10.1046/j.1365-2958.1999.01541.x. [DOI] [PubMed] [Google Scholar]
  88. Prüss B. M., Francis K. P., von Stetten F., Scherer S. Correlation of 16S ribosomal DNA signature sequences with temperature-dependent growth rates of mesophilic and psychrotolerant strains of the Bacillus cereus group. J Bacteriol. 1999 Apr;181(8):2624–2630. doi: 10.1128/jb.181.8.2624-2630.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Ross M. A., Setlow P. The Bacillus subtilis HBsu protein modifies the effects of alpha/beta-type, small acid-soluble spore proteins on DNA. J Bacteriol. 2000 Apr;182(7):1942–1948. doi: 10.1128/jb.182.7.1942-1948.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science. 1993 Nov 26;262(5138):1407–1413. doi: 10.1126/science.8248780. [DOI] [PubMed] [Google Scholar]
  91. Schindelin H., Jiang W., Inouye M., Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5119–5123. doi: 10.1073/pnas.91.11.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Schindelin H., Marahiel M. A., Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature. 1993 Jul 8;364(6433):164–168. doi: 10.1038/364164a0. [DOI] [PubMed] [Google Scholar]
  93. Schleich T., Verwolf G. L., Twombly K. A circular dichroism study of Escherichia coli Initiation Factor-1 binding to polynucleotides. Biochim Biophys Acta. 1980 Sep 19;609(2):313–320. doi: 10.1016/0005-2787(80)90243-9. [DOI] [PubMed] [Google Scholar]
  94. Schnuchel A., Wiltscheck R., Czisch M., Herrler M., Willimsky G., Graumann P., Marahiel M. A., Holak T. A. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature. 1993 Jul 8;364(6433):169–171. doi: 10.1038/364169a0. [DOI] [PubMed] [Google Scholar]
  95. Schouten J. P. Hybridization selection of covalent nucleic acid-protein complexes. 2. Cross-linking of proteins to specific Escherichia coli mRNAs and DNA sequences by formaldehyde treatment of intact cells. J Biol Chem. 1985 Aug 15;260(17):9929–9935. [PubMed] [Google Scholar]
  96. Schouten J. P. Hybridization selection of nucleic acid-protein complexes. 1. Detection of proteins cross-linked to specific mRNAs and DNA sequences by irradiation of intact Escherichia coli cells with ultraviolet light. J Biol Chem. 1985 Aug 15;260(17):9916–9928. [PubMed] [Google Scholar]
  97. Schröder K., Graumann P., Schnuchel A., Holak T. A., Marahiel M. A. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol. 1995 May;16(4):699–708. doi: 10.1111/j.1365-2958.1995.tb02431.x. [DOI] [PubMed] [Google Scholar]
  98. Sette M., van Tilborg P., Spurio R., Kaptein R., Paci M., Gualerzi C. O., Boelens R. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif. EMBO J. 1997 Mar 17;16(6):1436–1443. doi: 10.1093/emboj/16.6.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Shires K., Steyn L. The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Mol Microbiol. 2001 Feb;39(4):994–1009. doi: 10.1046/j.1365-2958.2001.02291.x. [DOI] [PubMed] [Google Scholar]
  100. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  102. Sommerville J. Activities of cold-shock domain proteins in translation control. Bioessays. 1999 Apr;21(4):319–325. doi: 10.1002/(SICI)1521-1878(199904)21:4<319::AID-BIES8>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  103. Stragier P., Losick R. Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet. 1996;30:297–241. doi: 10.1146/annurev.genet.30.1.297. [DOI] [PubMed] [Google Scholar]
  104. Strauch M. A., de Mendoza D., Hoch J. A. cis-unsaturated fatty acids specifically inhibit a signal-transducing protein kinase required for initiation of sporulation in Bacillus subtilis. Mol Microbiol. 1992 Oct;6(20):2909–2917. doi: 10.1111/j.1365-2958.1992.tb01750.x. [DOI] [PubMed] [Google Scholar]
  105. Suutari M., Laakso S. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol. 1994;20(4):285–328. doi: 10.3109/10408419409113560. [DOI] [PubMed] [Google Scholar]
  106. Suzuki I., Los D. A., Kanesaki Y., Mikami K., Murata N. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 2000 Mar 15;19(6):1327–1334. doi: 10.1093/emboj/19.6.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. VanBogelen R. A., Neidhardt F. C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5589–5593. doi: 10.1073/pnas.87.15.5589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Wada A. Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells. 1998 Apr;3(4):203–208. doi: 10.1046/j.1365-2443.1998.00187.x. [DOI] [PubMed] [Google Scholar]
  110. Wada M., Kano Y., Ogawa T., Okazaki T., Imamoto F. Construction and characterization of the deletion mutant of hupA and hupB genes in Escherichia coli. J Mol Biol. 1988 Dec 5;204(3):581–591. doi: 10.1016/0022-2836(88)90357-9. [DOI] [PubMed] [Google Scholar]
  111. Wang N., Yamanaka K., Inouye M. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol. 1999 Mar;181(5):1603–1609. doi: 10.1128/jb.181.5.1603-1609.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Weber M. H., Beckering C. L., Marahiel M. A. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J Bacteriol. 2001 Dec;183(24):7381–7386. doi: 10.1128/JB.183.24.7381-7386.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Weber M. H., Klein W., Müller L., Niess U. M., Marahiel M. A. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol. 2001 Mar;39(5):1321–1329. doi: 10.1111/j.1365-2958.2001.02322.x. [DOI] [PubMed] [Google Scholar]
  114. Weber M. H., Volkov A. V., Fricke I., Marahiel M. A., Graumann P. L. Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. J Bacteriol. 2001 Nov;183(21):6435–6443. doi: 10.1128/JB.183.21.6435-6443.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Wendrich T. M., Beckering C. L., Marahiel M. A. Characterization of the relA/spoT gene from Bacillus stearothermophilus. FEMS Microbiol Lett. 2000 Sep 15;190(2):195–201. doi: 10.1111/j.1574-6968.2000.tb09286.x. [DOI] [PubMed] [Google Scholar]
  116. Wendrich T. M., Marahiel M. A. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol. 1997 Oct;26(1):65–79. doi: 10.1046/j.1365-2958.1997.5511919.x. [DOI] [PubMed] [Google Scholar]
  117. Wistow G. Cold shock and DNA binding. Nature. 1990 Apr 26;344(6269):823–824. doi: 10.1038/344823c0. [DOI] [PubMed] [Google Scholar]
  118. Woldringh C. L., Jensen P. R., Westerhoff H. V. Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? FEMS Microbiol Lett. 1995 Sep 15;131(3):235–242. doi: 10.1111/j.1574-6968.1995.tb07782.x. [DOI] [PubMed] [Google Scholar]
  119. Wolffe A. P., Tafuri S., Ranjan M., Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992 Apr;4(4):290–298. [PubMed] [Google Scholar]
  120. Yamanaka K. Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol. 1999 Nov;1(2):193–202. [PubMed] [Google Scholar]
  121. Yamanaka K., Fang L., Inouye M. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol. 1998 Jan;27(2):247–255. doi: 10.1046/j.1365-2958.1998.00683.x. [DOI] [PubMed] [Google Scholar]
  122. Yamanaka K., Inouye M. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J Bacteriol. 1997 Aug;179(16):5126–5130. doi: 10.1128/jb.179.16.5126-5130.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Yamanaka K., Mitani T., Ogura T., Niki H., Hiraga S. Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. Mol Microbiol. 1994 Jul;13(2):301–312. doi: 10.1111/j.1365-2958.1994.tb00424.x. [DOI] [PubMed] [Google Scholar]
  124. Yamanaka K., Zheng W., Crooke E., Wang Y. H., Inouye M. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol Microbiol. 2001 Mar;39(6):1572–1584. doi: 10.1046/j.1365-2958.2001.02345.x. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES