Abstract
Plants from temperate and cold climates are able to increase their freezing tolerance during exposure to low non-freezing temperatures. It has been shown that several genes are induced in a coordinated manner during this process of cold acclimation. The functional role of most of the corresponding cold-regulated proteins is not yet known. We summarize our knowledge of those cold-regulated proteins that are able to stabilize membranes during a freeze-thaw cycle. Special emphasis is placed on cryoprotectin, a lipid-transfer protein homologue that was isolated from cold-acclimated cabbage leaves and that protects isolated chloroplast thylakoid membranes from freeze-thaw damage.
Full Text
The Full Text of this article is available as a PDF (132.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arondel12 V, V, Vergnolle2 C, Cantrel C, Kader J. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci. 2000 Aug 8;157(1):1–12. doi: 10.1016/s0168-9452(00)00232-6. [DOI] [PubMed] [Google Scholar]
- Cammue B. P., Thevissen K., Hendriks M., Eggermont K., Goderis I. J., Proost P., Van Damme J., Osborn R. W., Guerbette F., Kader J. C. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 1995 Oct;109(2):445–455. doi: 10.1104/pp.109.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charvolin D., Douliez J. P., Marion D., Cohen-Addad C., Pebay-Peyroula E. The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. Eur J Biochem. 1999 Sep;264(2):562–568. doi: 10.1046/j.1432-1327.1999.00667.x. [DOI] [PubMed] [Google Scholar]
- Clark A. M., Bohnert H. J. Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana. Plant Cell Physiol. 1999 Jan;40(1):69–76. doi: 10.1093/oxfordjournals.pcp.a029476. [DOI] [PubMed] [Google Scholar]
- Douliez J. P., Pato C., Rabesona H., Mollé D., Marion D. Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem. 2001 Mar;268(5):1400–1403. doi: 10.1046/j.1432-1327.2001.02007.x. [DOI] [PubMed] [Google Scholar]
- Dunn M. A., Hughes M. A., Zhang L., Pearce R. S., Quigley A. S., Jack P. L. Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4. Mol Gen Genet. 1991 Oct;229(3):389–394. doi: 10.1007/BF00267460. [DOI] [PubMed] [Google Scholar]
- García-Olmedo F., Molina A., Segura A., Moreno M. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 1995 Feb;3(2):72–74. doi: 10.1016/s0966-842x(00)88879-4. [DOI] [PubMed] [Google Scholar]
- Gilmour S. J., Sebolt A. M., Salazar M. P., Everard J. D., Thomashow M. F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000 Dec;124(4):1854–1865. doi: 10.1104/pp.124.4.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gincel E., Simorre J. P., Caille A., Marion D., Ptak M., Vovelle F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem. 1994 Dec 1;226(2):413–422. doi: 10.1111/j.1432-1033.1994.tb20066.x. [DOI] [PubMed] [Google Scholar]
- Gomar J., Petit M. C., Sodano P., Sy D., Marion D., Kader J. C., Vovelle F., Ptak M. Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci. 1996 Apr;5(4):565–577. doi: 10.1002/pro.5560050402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomar J., Sodano P., Sy D., Shin D. H., Lee J. Y., Suh S. W., Marion D., Vovelle F., Ptak M. Comparison of solution and crystal structures of maize nonspecific lipid transfer protein: a model for a potential in vivo lipid carrier protein. Proteins. 1998 May 1;31(2):160–171. doi: 10.1002/(sici)1097-0134(19980501)31:2<160::aid-prot6>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Han G. W., Lee J. Y., Song H. K., Chang C., Min K., Moon J., Shin D. H., Kopka M. L., Sawaya M. R., Yuan H. S. Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol. 2001 Apr 27;308(2):263–278. doi: 10.1006/jmbi.2001.4559. [DOI] [PubMed] [Google Scholar]
- Heinemann B., Andersen K. V., Nielsen P. R., Bech L. M., Poulsen F. M. Structure in solution of a four-helix lipid binding protein. Protein Sci. 1996 Jan;5(1):13–23. doi: 10.1002/pro.5560050103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Bakaltcheva I., Schmitt J. M. Galactose-Specific Lectins Protect Isolated Thylakoids against Freeze-Thaw Damage. Plant Physiol. 1993 Sep;103(1):59–65. doi: 10.1104/pp.103.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Höfner R., Schwab K. B., Heber U., Schmitt J. M. Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiol. 1987 Feb;83(2):251–253. doi: 10.1104/pp.83.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Meins Jr F., Schmitt J. M. [beta]-1,3-Glucanase Is Cryoprotective in Vitro and Is Accumulated in Leaves during Cold Acclimation. Plant Physiol. 1997 Jul;114(3):1077–1083. doi: 10.1104/pp.114.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hincha D. K., Neukamm B., Sror H. A., Sieg F., Weckwarth W., Rückels M., Lullien-Pellerin V., Schröder W., Schmitt J. M. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol. 2001 Feb;125(2):835–846. doi: 10.1104/pp.125.2.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O., Thomashow M. F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998 Apr 3;280(5360):104–106. doi: 10.1126/science.280.5360.104. [DOI] [PubMed] [Google Scholar]
- Kader Jean-Claude. LIPID-TRANSFER PROTEINS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):627–654. doi: 10.1146/annurev.arplant.47.1.627. [DOI] [PubMed] [Google Scholar]
- Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999 Mar;17(3):287–291. doi: 10.1038/7036. [DOI] [PubMed] [Google Scholar]
- Keresztessy Z., Hughes M. A. Homology modelling and molecular dynamics aided analysis of ligand complexes demonstrates functional properties of lipid-transfer proteins encoded by the barley low-temperature-inducible gene family, blt4. Plant J. 1998 Jun;14(5):523–533. doi: 10.1046/j.1365-313x.1998.00149.x. [DOI] [PubMed] [Google Scholar]
- Klein C., de Lamotte-Guéry F., Gautier F., Moulin G., Boze H., Joudrier P., Gautier M. F. High-level secretion of a wheat lipid transfer protein in Pichia pastoris. Protein Expr Purif. 1998 Jun;13(1):73–82. doi: 10.1006/prep.1998.0888. [DOI] [PubMed] [Google Scholar]
- Krause G. H., Grafflage S., Rumich-Bayer S., Somersalo S. Effects of freezing on plant mesophyll cells. Symp Soc Exp Biol. 1988;42:311–327. [PubMed] [Google Scholar]
- Lee J. Y., Min K., Cha H., Shin D. H., Hwang K. Y., Suh S. W. Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol. 1998 Feb 20;276(2):437–448. doi: 10.1006/jmbi.1997.1550. [DOI] [PubMed] [Google Scholar]
- Lerche M. H., Kragelund B. B., Bech L. M., Poulsen F. M. Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure. 1997 Feb 15;5(2):291–306. doi: 10.1016/s0969-2126(97)00186-x. [DOI] [PubMed] [Google Scholar]
- Lerche M. H., Poulsen F. M. Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins. Protein Sci. 1998 Dec;7(12):2490–2498. doi: 10.1002/pro.5560071202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C., Thomashow M. F. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103–1108. doi: 10.1016/s0006-291x(05)80304-3. [DOI] [PubMed] [Google Scholar]
- Lin C., Thomashow M. F. DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor15 and Characterization of the COR 15 Polypeptide. Plant Physiol. 1992 Jun;99(2):519–525. doi: 10.1104/pp.99.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindorff-Larsen K., Winther J. R. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett. 2001 Jan 19;488(3):145–148. doi: 10.1016/s0014-5793(00)02424-8. [DOI] [PubMed] [Google Scholar]
- Lullien-Pellerin V., Devaux C., Ihorai T., Marion D., Pahin V., Joudrier P., Gautier M. F. Production in Escherichia coli and site-directed mutagenesis of a 9-kDa nonspecific lipid transfer protein from wheat. Eur J Biochem. 1999 Mar;260(3):861–868. doi: 10.1046/j.1432-1327.1999.00229.x. [DOI] [PubMed] [Google Scholar]
- Masuta C., Furuno M., Tanaka H., Yamada M., Koiwai A. Molecular cloning of a cDNA clone for tobacco lipid transfer protein and expression of the functional protein in Escherichia coli. FEBS Lett. 1992 Oct 19;311(2):119–123. doi: 10.1016/0014-5793(92)81381-u. [DOI] [PubMed] [Google Scholar]
- Molina A., Diaz I., Vasil I. K., Carbonero P., García-Olmedo F. Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol Gen Genet. 1996 Aug 27;252(1-2):162–168. doi: 10.1007/BF02173216. [DOI] [PubMed] [Google Scholar]
- Newton S. S., Duman J. G. An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara. Plant Mol Biol. 2000 Nov;44(5):581–589. doi: 10.1023/a:1026599028063. [DOI] [PubMed] [Google Scholar]
- Oliver Ann E., Hincha Dirk K., Crowe John H. Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comp Biochem Physiol A Mol Integr Physiol. 2002 Mar;131(3):515–525. doi: 10.1016/s1095-6433(01)00514-1. [DOI] [PubMed] [Google Scholar]
- Petit M. C., Sodano P., Marion D., Ptak M. Two-dimensional 1H-NMR studies of maize lipid-transfer protein. Sequence-specific assignment and secondary structure. Eur J Biochem. 1994 Jun 15;222(3):1047–1054. doi: 10.1111/j.1432-1033.1994.tb18957.x. [DOI] [PubMed] [Google Scholar]
- Poznanski J., Sodano P., Suh S. W., Lee J. Y., Ptak M., Vovelle F. Solution structure of a lipid transfer protein extracted from rice seeds. Comparison with homologous proteins. Eur J Biochem. 1999 Feb;259(3):692–708. doi: 10.1046/j.1432-1327.1999.00093.x. [DOI] [PubMed] [Google Scholar]
- Pyee J., Kolattukudy P. E. The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J. 1995 Jan;7(1):49–59. doi: 10.1046/j.1365-313x.1995.07010049.x. [DOI] [PubMed] [Google Scholar]
- Pyee J., Yu H., Kolattukudy P. E. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys. 1994 Jun;311(2):460–468. doi: 10.1006/abbi.1994.1263. [DOI] [PubMed] [Google Scholar]
- Shin D. H., Lee J. Y., Hwang K. Y., Kim K. K., Suh S. W. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure. 1995 Feb 15;3(2):189–199. doi: 10.1016/s0969-2126(01)00149-6. [DOI] [PubMed] [Google Scholar]
- Sieg F., Schroder W., Schmitt J. M., Hincha D. K. Purification and Characterization of a Cryoprotective Protein (Cryoprotectin) from the Leaves of Cold-Acclimated Cabbage. Plant Physiol. 1996 May;111(1):215–221. doi: 10.1104/pp.111.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sodano P., Caille A., Sy D., de Person G., Marion D., Ptak M. 1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex. FEBS Lett. 1997 Oct 20;416(2):130–134. doi: 10.1016/s0014-5793(97)01185-x. [DOI] [PubMed] [Google Scholar]
- Soufleri I. A., Vergnolle C., Miginiac E., Kader J. C. Germination-specific lipid transfer protein cDNAs in Brassica napus L. Planta. 1996;199(2):229–237. doi: 10.1007/BF00196563. [DOI] [PubMed] [Google Scholar]
- Sterk P., Booij H., Schellekens G. A., Van Kammen A., De Vries S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):907–921. doi: 10.1105/tpc.3.9.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tassin-Moindrot S., Caille A., Douliez J. P., Marion D., Vovelle F. The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2. Eur J Biochem. 2000 Feb;267(4):1117–1124. doi: 10.1046/j.1432-1327.2000.01109.x. [DOI] [PubMed] [Google Scholar]
- Tassin S., Broekaert W. F., Marion D., Acland D. P., Ptak M., Vovelle F., Sodano P. Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry. 1998 Mar 17;37(11):3623–3637. doi: 10.1021/bi9723515. [DOI] [PubMed] [Google Scholar]
- Terras F. R., Goderis I. J., Van Leuven F., Vanderleyden J., Cammue B. P., Broekaert W. F. In Vitro Antifungal Activity of a Radish (Raphanus sativus L.) Seed Protein Homologous to Nonspecific Lipid Transfer Proteins. Plant Physiol. 1992 Oct;100(2):1055–1058. doi: 10.1104/pp.100.2.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomashow M. F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 1998 Sep;118(1):1–8. doi: 10.1104/pp.118.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomashow Michael F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):571–599. doi: 10.1146/annurev.arplant.50.1.571. [DOI] [PubMed] [Google Scholar]
- Torres-Schumann S., Godoy J. A., Pintor-Toro J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol. 1992 Feb;18(4):749–757. doi: 10.1007/BF00020016. [DOI] [PubMed] [Google Scholar]
- Trevino M. B., OConnell M. A. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol. 1998 Apr;116(4):1461–1468. doi: 10.1104/pp.116.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemura M., Steponkus P. L. Effect of Cold Acclimation on the Lipid Composition of the Inner and Outer Membrane of the Chloroplast Envelope Isolated from Rye Leaves. Plant Physiol. 1997 Aug;114(4):1493–1500. doi: 10.1104/pp.114.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volger H. G., Heber U. Cryoprotective leaf proteins. Biochim Biophys Acta. 1975 Dec 15;412(2):335–349. doi: 10.1016/0005-2795(75)90048-3. [DOI] [PubMed] [Google Scholar]
- Zavodszky M., Chen C. W., Huang J. K., Zolkiewski M., Wen L., Krishnamoorthi R. Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V. Protein Sci. 2001 Jan;10(1):149–160. doi: 10.1110/ps.26801. [DOI] [PMC free article] [PubMed] [Google Scholar]