Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):987–1001. doi: 10.1098/rstb.2002.1113

The temporal resolution of neural codes: does response latency have a unique role?

M W Oram 1, D Xiao 1, B Dritschel 1, K R Payne 1
PMCID: PMC1693013  PMID: 12217170

Abstract

This article reviews the nature of the neural code in non-human primate cortex and assesses the potential for neurons to carry two or more signals simultaneously. Neurophysiological recordings from visual and motor systems indicate that the evidence for a role for precisely timed spikes relative to other spike times (ca. 1-10 ms resolution) is inconclusive. This indicates that the visual system does not carry a signal that identifies whether the responses were elicited when the stimulus was attended or not. Simulations show that the absence of such a signal reduces, but does not eliminate, the increased discrimination between stimuli that are attended compared with when the stimuli are unattended. The increased accuracy asymptotes with increased gain control, indicating limited benefit from increasing attention. The absence of a signal identifying the attentional state under which stimuli were viewed can produce the greatest discrimination between attended and unattended stimuli. Furthermore, the greatest reduction in discrimination errors occurs for a limited range of gain control, again indicating that attention effects are limited. By contrast to precisely timed patterns of spikes where the timing is relative to other spikes, response latency provides a fine temporal resolution signal (ca. 10 ms resolution) that carries information that is unavailable from coarse temporal response measures. Changes in response latency and changes in response magnitude can give rise to different predictions for the patterns of reaction times. The predictions are verified, and it is shown that the standard method for distinguishing executive and slave processes is only valid if the representations of interest, as evidenced by the neural code, are known. Overall, the data indicate that the signalling evident in neural signals is restricted to the spike count and the precise times of spikes relative to stimulus onset (response latency). These coding issues have implications for our understanding of cognitive models of attention and the roles of executive and slave systems.

Full Text

The Full Text of this article is available as a PDF (486.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott L. F., Dayan P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 1999 Jan 1;11(1):91–101. doi: 10.1162/089976699300016827. [DOI] [PubMed] [Google Scholar]
  2. Abeles M., Bergman H., Margalit E., Vaadia E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol. 1993 Oct;70(4):1629–1638. doi: 10.1152/jn.1993.70.4.1629. [DOI] [PubMed] [Google Scholar]
  3. Abeles M., Gerstein G. L. Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol. 1988 Sep;60(3):909–924. doi: 10.1152/jn.1988.60.3.909. [DOI] [PubMed] [Google Scholar]
  4. Aertsen A. M., Gerstein G. L., Habib M. K., Palm G. Dynamics of neuronal firing correlation: modulation of "effective connectivity". J Neurophysiol. 1989 May;61(5):900–917. doi: 10.1152/jn.1989.61.5.900. [DOI] [PubMed] [Google Scholar]
  5. Baddeley R., Abbott L. F., Booth M. C., Sengpiel F., Freeman T., Wakeman E. A., Rolls E. T. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc Biol Sci. 1997 Dec 22;264(1389):1775–1783. doi: 10.1098/rspb.1997.0246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker S. N., Lemon R. N. Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol. 2000 Oct;84(4):1770–1780. doi: 10.1152/jn.2000.84.4.1770. [DOI] [PubMed] [Google Scholar]
  7. Baker S. N., Spinks R., Jackson A., Lemon R. N. Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. J Neurophysiol. 2001 Feb;85(2):869–885. doi: 10.1152/jn.2001.85.2.869. [DOI] [PubMed] [Google Scholar]
  8. Berry M. J., 2nd, Meister M. Refractoriness and neural precision. J Neurosci. 1998 Mar 15;18(6):2200–2211. doi: 10.1523/JNEUROSCI.18-06-02200.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berry M. J., Warland D. K., Meister M. The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5411–5416. doi: 10.1073/pnas.94.10.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bradley A., Skottun B. C., Ohzawa I., Sclar G., Freeman R. D. Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J Neurophysiol. 1987 Mar;57(3):755–772. doi: 10.1152/jn.1987.57.3.755. [DOI] [PubMed] [Google Scholar]
  11. Britten K. H., Shadlen M. N., Newsome W. T., Movshon J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis Neurosci. 1993 Nov-Dec;10(6):1157–1169. doi: 10.1017/s0952523800010269. [DOI] [PubMed] [Google Scholar]
  12. Brody CD. Correlations without synchrony. Neural Comput. 1999 Oct 1;11(7):1537–1551. doi: 10.1162/089976699300016133. [DOI] [PubMed] [Google Scholar]
  13. Brody CD. Disambiguating different covariation types. Neural Comput. 1999 Oct 1;11(7):1527–1535. doi: 10.1162/089976699300016124. [DOI] [PubMed] [Google Scholar]
  14. Buracas G. T., Zador A. M., DeWeese M. R., Albright T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron. 1998 May;20(5):959–969. doi: 10.1016/s0896-6273(00)80477-8. [DOI] [PubMed] [Google Scholar]
  15. Busey T. A., Loftus G. R. Sensory and cognitive components of visual information acquisition. Psychol Rev. 1994 Jul;101(3):446–469. doi: 10.1037/0033-295x.101.3.446. [DOI] [PubMed] [Google Scholar]
  16. Chelazzi L., Miller E. K., Duncan J., Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993 May 27;363(6427):345–347. doi: 10.1038/363345a0. [DOI] [PubMed] [Google Scholar]
  17. Dayhoff J. E., Gerstein G. L. Favored patterns in spike trains. I. Detection. J Neurophysiol. 1983 Jun;49(6):1334–1348. doi: 10.1152/jn.1983.49.6.1334. [DOI] [PubMed] [Google Scholar]
  18. Dayhoff J. E., Gerstein G. L. Favored patterns in spike trains. II. Application. J Neurophysiol. 1983 Jun;49(6):1349–1363. doi: 10.1152/jn.1983.49.6.1349. [DOI] [PubMed] [Google Scholar]
  19. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  20. Engel A. K., König P., Kreiter A. K., Schillen T. B., Singer W. Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci. 1992 Jun;15(6):218–226. doi: 10.1016/0166-2236(92)90039-b. [DOI] [PubMed] [Google Scholar]
  21. Eskandar E. N., Optican L. M., Richmond B. J. Role of inferior temporal neurons in visual memory. II. Multiplying temporal waveforms related to vision and memory. J Neurophysiol. 1992 Oct;68(4):1296–1306. doi: 10.1152/jn.1992.68.4.1296. [DOI] [PubMed] [Google Scholar]
  22. Eskandar E. N., Richmond B. J., Optican L. M. Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. J Neurophysiol. 1992 Oct;68(4):1277–1295. doi: 10.1152/jn.1992.68.4.1277. [DOI] [PubMed] [Google Scholar]
  23. Fuster J. M. Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol. 1990 Sep;64(3):681–697. doi: 10.1152/jn.1990.64.3.681. [DOI] [PubMed] [Google Scholar]
  24. Gawne T. J., Kjaer T. W., Richmond B. J. Latency: another potential code for feature binding in striate cortex. J Neurophysiol. 1996 Aug;76(2):1356–1360. doi: 10.1152/jn.1996.76.2.1356. [DOI] [PubMed] [Google Scholar]
  25. Gershon E. D., Wiener M. C., Latham P. E., Richmond B. J. Coding strategies in monkey V1 and inferior temporal cortices. J Neurophysiol. 1998 Mar;79(3):1135–1144. doi: 10.1152/jn.1998.79.3.1135. [DOI] [PubMed] [Google Scholar]
  26. Hanes D. P., Schall J. D. Neural control of voluntary movement initiation. Science. 1996 Oct 18;274(5286):427–430. doi: 10.1126/science.274.5286.427. [DOI] [PubMed] [Google Scholar]
  27. Heller J., Hertz J. A., Kjaer T. W., Richmond B. J. Information flow and temporal coding in primate pattern vision. J Comput Neurosci. 1995 Sep;2(3):175–193. doi: 10.1007/BF00961433. [DOI] [PubMed] [Google Scholar]
  28. Lee D., Port N. L., Kruse W., Georgopoulos A. P. Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci. 1998 Feb 1;18(3):1161–1170. doi: 10.1523/JNEUROSCI.18-03-01161.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lestienne R., Strehler B. L. Time structure and stimulus dependence of precisely replicating patterns present in monkey cortical neuronal spike trains. Brain Res. 1987 Dec 29;437(2):214–238. doi: 10.1016/0006-8993(87)91638-6. [DOI] [PubMed] [Google Scholar]
  30. Lestienne R., Tuckwell H. C. The significance of precisely replicating patterns in mammalian CNS spike trains. Neuroscience. 1998 Jan;82(2):315–336. doi: 10.1016/s0306-4522(97)00281-9. [DOI] [PubMed] [Google Scholar]
  31. Levine M. W., Troy J. B. The variability of the maintained discharge of cat dorsal lateral geniculate cells. J Physiol. 1986 Jun;375:339–359. doi: 10.1113/jphysiol.1986.sp016120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Loftus G. R., Ruthruff E. A theory of visual information acquisition and visual memory with special application to intensity-duration trade-offs. J Exp Psychol Hum Percept Perform. 1994 Feb;20(1):33–49. doi: 10.1037//0096-1523.20.1.33. [DOI] [PubMed] [Google Scholar]
  33. Lueschow A., Miller E. K., Desimone R. Inferior temporal mechanisms for invariant object recognition. Cereb Cortex. 1994 Sep-Oct;4(5):523–531. doi: 10.1093/cercor/4.5.523. [DOI] [PubMed] [Google Scholar]
  34. Maynard E. M., Hatsopoulos N. G., Ojakangas C. L., Acuna B. D., Sanes J. N., Normann R. A., Donoghue J. P. Neuronal interactions improve cortical population coding of movement direction. J Neurosci. 1999 Sep 15;19(18):8083–8093. doi: 10.1523/JNEUROSCI.19-18-08083.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. McClurkin J. W., Gawne T. J., Optican L. M., Richmond B. J. Lateral geniculate neurons in behaving primates. II. Encoding of visual information in the temporal shape of the response. J Neurophysiol. 1991 Sep;66(3):794–808. doi: 10.1152/jn.1991.66.3.794. [DOI] [PubMed] [Google Scholar]
  36. McClurkin J. W., Gawne T. J., Richmond B. J., Optican L. M., Robinson D. L. Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. J Neurophysiol. 1991 Sep;66(3):777–793. doi: 10.1152/jn.1991.66.3.777. [DOI] [PubMed] [Google Scholar]
  37. McClurkin J. W., Optican L. M., Richmond B. J., Gawne T. J. Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. Science. 1991 Aug 9;253(5020):675–677. doi: 10.1126/science.1908118. [DOI] [PubMed] [Google Scholar]
  38. Mel B., Fiser J. Minimizing binding errors using learned conjunctive features. Neural Comput. 2000 Feb;12(2):247–278. doi: 10.1162/089976600300015772. [DOI] [PubMed] [Google Scholar]
  39. Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
  40. Motter B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2178–2189. doi: 10.1523/JNEUROSCI.14-04-02178.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Opara R., Wörgötter F. Using visual latencies to improve image segmentation. Neural Comput. 1996 Oct 1;8(7):1493–1520. doi: 10.1162/neco.1996.8.7.1493. [DOI] [PubMed] [Google Scholar]
  42. Optican L. M., Richmond B. J. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J Neurophysiol. 1987 Jan;57(1):162–178. doi: 10.1152/jn.1987.57.1.162. [DOI] [PubMed] [Google Scholar]
  43. Oram M. W., Földiák P., Perrett D. I., Sengpiel F. The 'Ideal Homunculus': decoding neural population signals. Trends Neurosci. 1998 Jun;21(6):259–265. doi: 10.1016/s0166-2236(97)01216-2. [DOI] [PubMed] [Google Scholar]
  44. Oram M. W., Hatsopoulos N. G., Richmond B. J., Donoghue J. P. Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. J Neurophysiol. 2001 Oct;86(4):1700–1716. doi: 10.1152/jn.2001.86.4.1700. [DOI] [PubMed] [Google Scholar]
  45. Oram M. W., Perrett D. I., Hietanen J. K. Directional tuning of motion-sensitive cells in the anterior superior temporal polysensory area of the macaque. Exp Brain Res. 1993;97(2):274–294. doi: 10.1007/BF00228696. [DOI] [PubMed] [Google Scholar]
  46. Oram M. W., Perrett D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol. 1996 Jul;76(1):109–129. doi: 10.1152/jn.1996.76.1.109. [DOI] [PubMed] [Google Scholar]
  47. Oram M. W., Perrett D. I. Time course of neural responses discriminating different views of the face and head. J Neurophysiol. 1992 Jul;68(1):70–84. doi: 10.1152/jn.1992.68.1.70. [DOI] [PubMed] [Google Scholar]
  48. Oram M. W., Wiener M. C., Lestienne R., Richmond B. J. Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol. 1999 Jun;81(6):3021–3033. doi: 10.1152/jn.1999.81.6.3021. [DOI] [PubMed] [Google Scholar]
  49. Palm G., Aertsen A. M., Gerstein G. L. On the significance of correlations among neuronal spike trains. Biol Cybern. 1988;59(1):1–11. doi: 10.1007/BF00336885. [DOI] [PubMed] [Google Scholar]
  50. Panzeri S., Schultz S. R., Treves A., Rolls E. T. Correlations and the encoding of information in the nervous system. Proc Biol Sci. 1999 May 22;266(1423):1001–1012. doi: 10.1098/rspb.1999.0736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Perrett D. I., Mistlin A. J., Chitty A. J., Smith P. A., Potter D. D., Broennimann R., Harries M. Specialized face processing and hemispheric asymmetry in man and monkey: evidence from single unit and reaction time studies. Behav Brain Res. 1988 Aug;29(3):245–258. doi: 10.1016/0166-4328(88)90029-0. [DOI] [PubMed] [Google Scholar]
  52. Perrett D. I., Oram M. W., Ashbridge E. Evidence accumulation in cell populations responsive to faces: an account of generalisation of recognition without mental transformations. Cognition. 1998 Jul;67(1-2):111–145. doi: 10.1016/s0010-0277(98)00015-8. [DOI] [PubMed] [Google Scholar]
  53. Perrett D. I., Oram M. W. Visual recognition based on temporal cortex cells: viewer-centred processing of pattern configuration. Z Naturforsch C. 1998 Jul-Aug;53(7-8):518–541. doi: 10.1515/znc-1998-7-807. [DOI] [PubMed] [Google Scholar]
  54. Prut Y., Vaadia E., Bergman H., Haalman I., Slovin H., Abeles M. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol. 1998 Jun;79(6):2857–2874. doi: 10.1152/jn.1998.79.6.2857. [DOI] [PubMed] [Google Scholar]
  55. Reich D. S., Mechler F., Victor J. D. Temporal coding of contrast in primary visual cortex: when, what, and why. J Neurophysiol. 2001 Mar;85(3):1039–1050. doi: 10.1152/jn.2001.85.3.1039. [DOI] [PubMed] [Google Scholar]
  56. Reich D. S., Victor J. D., Knight B. W., Ozaki T., Kaplan E. Response variability and timing precision of neuronal spike trains in vivo. J Neurophysiol. 1997 May;77(5):2836–2841. doi: 10.1152/jn.1997.77.5.2836. [DOI] [PubMed] [Google Scholar]
  57. Reynolds J. H., Chelazzi L., Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999 Mar 1;19(5):1736–1753. doi: 10.1523/JNEUROSCI.19-05-01736.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Reynolds J. H., Pasternak T., Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000 Jun;26(3):703–714. doi: 10.1016/s0896-6273(00)81206-4. [DOI] [PubMed] [Google Scholar]
  59. Richmond B. J., Optican L. M., Podell M., Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol. 1987 Jan;57(1):132–146. doi: 10.1152/jn.1987.57.1.132. [DOI] [PubMed] [Google Scholar]
  60. Richmond B. J., Optican L. M., Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol. 1990 Aug;64(2):351–369. doi: 10.1152/jn.1990.64.2.351. [DOI] [PubMed] [Google Scholar]
  61. Richmond B. J., Optican L. M. Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. J Neurophysiol. 1990 Aug;64(2):370–380. doi: 10.1152/jn.1990.64.2.370. [DOI] [PubMed] [Google Scholar]
  62. Richmond B. J., Oram M. W., Wiener M. C. Response features determining spike times. Neural Plast. 1999;6(4):133–145. doi: 10.1155/NP.1999.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Richmond B. J., Sato T. Enhancement of inferior temporal neurons during visual discrimination. J Neurophysiol. 1987 Dec;58(6):1292–1306. doi: 10.1152/jn.1987.58.6.1292. [DOI] [PubMed] [Google Scholar]
  64. Riehle A., Grün S., Diesmann M., Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science. 1997 Dec 12;278(5345):1950–1953. doi: 10.1126/science.278.5345.1950. [DOI] [PubMed] [Google Scholar]
  65. Sato T. Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. J Neurophysiol. 1988 Jul;60(1):344–364. doi: 10.1152/jn.1988.60.1.344. [DOI] [PubMed] [Google Scholar]
  66. Shadlen M. N., Newsome W. T. Is there a signal in the noise? Curr Opin Neurobiol. 1995 Apr;5(2):248–250. doi: 10.1016/0959-4388(95)80033-6. [DOI] [PubMed] [Google Scholar]
  67. Shadlen M. N., Newsome W. T. Noise, neural codes and cortical organization. Curr Opin Neurobiol. 1994 Aug;4(4):569–579. doi: 10.1016/0959-4388(94)90059-0. [DOI] [PubMed] [Google Scholar]
  68. Shadlen M. N., Newsome W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci. 1998 May 15;18(10):3870–3896. doi: 10.1523/JNEUROSCI.18-10-03870.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Singer W., Gray C. M. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–586. doi: 10.1146/annurev.ne.18.030195.003011. [DOI] [PubMed] [Google Scholar]
  70. Snowden R. J., Treue S., Andersen R. A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp Brain Res. 1992;88(2):389–400. doi: 10.1007/BF02259114. [DOI] [PubMed] [Google Scholar]
  71. Softky W. R., Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci. 1993 Jan;13(1):334–350. doi: 10.1523/JNEUROSCI.13-01-00334.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Tolhurst D. J., Movshon J. A., Dean A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 1983;23(8):775–785. doi: 10.1016/0042-6989(83)90200-6. [DOI] [PubMed] [Google Scholar]
  73. Tovée M. J., Rolls E. T., Treves A., Bellis R. P. Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol. 1993 Aug;70(2):640–654. doi: 10.1152/jn.1993.70.2.640. [DOI] [PubMed] [Google Scholar]
  74. Treisman A. M., Kanwisher N. G. Perceiving visually presented objects: recognition, awareness, and modularity. Curr Opin Neurobiol. 1998 Apr;8(2):218–226. doi: 10.1016/s0959-4388(98)80143-8. [DOI] [PubMed] [Google Scholar]
  75. Treisman A. Feature binding, attention and object perception. Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1295–1306. doi: 10.1098/rstb.1998.0284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Treisman A. The binding problem. Curr Opin Neurobiol. 1996 Apr;6(2):171–178. doi: 10.1016/s0959-4388(96)80070-5. [DOI] [PubMed] [Google Scholar]
  77. Treue S., Maunsell J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 8;382(6591):539–541. doi: 10.1038/382539a0. [DOI] [PubMed] [Google Scholar]
  78. Treves A., Panzeri S., Rolls E. T., Booth M., Wakeman E. A. Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Comput. 1999 Apr 1;11(3):601–632. doi: 10.1162/089976699300016593. [DOI] [PubMed] [Google Scholar]
  79. Ullman S., Soloviev S. Computation of pattern invariance in brain-like structures. Neural Netw. 1999 Oct;12(7-8):1021–1036. doi: 10.1016/s0893-6080(99)00048-9. [DOI] [PubMed] [Google Scholar]
  80. Vaadia E., Haalman I., Abeles M., Bergman H., Prut Y., Slovin H., Aertsen A. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature. 1995 Feb 9;373(6514):515–518. doi: 10.1038/373515a0. [DOI] [PubMed] [Google Scholar]
  81. Van Rullen R., Gautrais J., Delorme A., Thorpe S. Face processing using one spike per neurone. Biosystems. 1998 Sep-Dec;48(1-3):229–239. doi: 10.1016/s0303-2647(98)00070-7. [DOI] [PubMed] [Google Scholar]
  82. Victor J. D., Purpura K. P. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 1996 Aug;76(2):1310–1326. doi: 10.1152/jn.1996.76.2.1310. [DOI] [PubMed] [Google Scholar]
  83. Villa A. E., Bajo Lorenzana V. M. Ketamine modulation of the temporal pattern of discharges and spike train interactions in the rat substantia nigra pars reticulata. Brain Res Bull. 1997;43(6):525–535. doi: 10.1016/s0361-9230(96)00337-1. [DOI] [PubMed] [Google Scholar]
  84. Vogels R., Spileers W., Orban G. A. The response variability of striate cortical neurons in the behaving monkey. Exp Brain Res. 1989;77(2):432–436. doi: 10.1007/BF00275002. [DOI] [PubMed] [Google Scholar]
  85. Wallis G., Rolls E. T. Invariant face and object recognition in the visual system. Prog Neurobiol. 1997 Feb;51(2):167–194. doi: 10.1016/s0301-0082(96)00054-8. [DOI] [PubMed] [Google Scholar]
  86. Wiener M. C., Oram M. W., Liu Z., Richmond B. J. Consistency of encoding in monkey visual cortex. J Neurosci. 2001 Oct 15;21(20):8210–8221. doi: 10.1523/JNEUROSCI.21-20-08210.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wiener M. C., Richmond B. J. Using response models to estimate channel capacity for neuronal classification of stationary visual stimuli using temporal coding. J Neurophysiol. 1999 Dec;82(6):2861–2875. doi: 10.1152/jn.1999.82.6.2861. [DOI] [PubMed] [Google Scholar]
  88. Zhang K., Ginzburg I., McNaughton B. L., Sejnowski T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol. 1998 Feb;79(2):1017–1044. doi: 10.1152/jn.1998.79.2.1017. [DOI] [PubMed] [Google Scholar]
  89. von der Malsburg C. Binding in models of perception and brain function. Curr Opin Neurobiol. 1995 Aug;5(4):520–526. doi: 10.1016/0959-4388(95)80014-x. [DOI] [PubMed] [Google Scholar]
  90. von der Malsburg C., Schneider W. A neural cocktail-party processor. Biol Cybern. 1986;54(1):29–40. doi: 10.1007/BF00337113. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES