Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):963–973. doi: 10.1098/rstb.2002.1108

Functional measurements of human ventral occipital cortex: retinotopy and colour.

Alex R Wade 1, Alyssa A Brewer 1, Jochem W Rieger 1, Brian A Wandell 1
PMCID: PMC1693014  PMID: 12217168

Abstract

Human colour vision originates in the cone photoreceptors, whose spatial density peaks in the fovea and declines rapidly into the periphery. For this reason, one expects to find a large representation of the cone-rich fovea in those cortical locations that support colour perception. Human occipital cortex contains several distinct foveal representations including at least two that extend onto the ventral surface: a region thought to be critical for colour vision. To learn more about these ventral signals, we used functional magnetic resonance imaging to identify visual field maps and colour responsivity on the ventral surface. We found a visual map of the complete contralateral hemifield in a 4 cm(2) region adjacent to ventral V3; the foveal representation of this map is confluent with that of areas V1/2/3. Additionally, a distinct foveal representation is present on the ventral surface situated 3-5 cm anterior from the confluent V1/2/3 foveal representations. This organization is not consistent with the definition of area V8, which assumes the presence of a quarter field representation adjacent to V3v. Comparisons of responses to luminance-matched coloured and achromatic patterns show increased activity to the coloured stimuli beginning in area V1 and extending through the new hemifield representation and further anterior in the ventral occipital lobe.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartels A., Zeki S. The architecture of the colour centre in the human visual brain: new results and a review. Eur J Neurosci. 2000 Jan;12(1):172–193. doi: 10.1046/j.1460-9568.2000.00905.x. [DOI] [PubMed] [Google Scholar]
  2. Bartels A., Zeki S. The theory of multistage integration in the visual brain. Proc Biol Sci. 1998 Dec 7;265(1412):2327–2332. doi: 10.1098/rspb.1998.0579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brainard D. H. The Psychophysics Toolbox. Spat Vis. 1997;10(4):433–436. [PubMed] [Google Scholar]
  4. Engel S. A., Glover G. H., Wandell B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997 Mar;7(2):181–192. doi: 10.1093/cercor/7.2.181. [DOI] [PubMed] [Google Scholar]
  5. Engel S. A., Rumelhart D. E., Wandell B. A., Lee A. T., Glover G. H., Chichilnisky E. J., Shadlen M. N. fMRI of human visual cortex. Nature. 1994 Jun 16;369(6481):525–525. doi: 10.1038/369525a0. [DOI] [PubMed] [Google Scholar]
  6. Epstein R., Harris A., Stanley D., Kanwisher N. The parahippocampal place area: recognition, navigation, or encoding? Neuron. 1999 May;23(1):115–125. doi: 10.1016/s0896-6273(00)80758-8. [DOI] [PubMed] [Google Scholar]
  7. Gattass R., Sousa A. P., Gross C. G. Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci. 1988 Jun;8(6):1831–1845. doi: 10.1523/JNEUROSCI.08-06-01831.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grill-Spector K., Malach R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) 2001 Apr;107(1-3):293–321. doi: 10.1016/s0001-6918(01)00019-1. [DOI] [PubMed] [Google Scholar]
  9. Hadjikhani N., Liu A. K., Dale A. M., Cavanagh P., Tootell R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998 Jul;1(3):235–241. doi: 10.1038/681. [DOI] [PubMed] [Google Scholar]
  10. Kanwisher N., McDermott J., Chun M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997 Jun 1;17(11):4302–4311. doi: 10.1523/JNEUROSCI.17-11-04302.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levy I., Hasson U., Avidan G., Hendler T., Malach R. Center-periphery organization of human object areas. Nat Neurosci. 2001 May;4(5):533–539. doi: 10.1038/87490. [DOI] [PubMed] [Google Scholar]
  12. McKeefry D. J., Zeki S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain. 1997 Dec;120(Pt 12):2229–2242. doi: 10.1093/brain/120.12.2229. [DOI] [PubMed] [Google Scholar]
  13. Meadows J. C. Disturbed perception of colours associated with localized cerebral lesions. Brain. 1974 Dec;97(4):615–632. doi: 10.1093/brain/97.1.615. [DOI] [PubMed] [Google Scholar]
  14. Mullen K. T. Colour vision as a post-receptoral specialization of the central visual field. Vision Res. 1991;31(1):119–130. doi: 10.1016/0042-6989(91)90079-k. [DOI] [PubMed] [Google Scholar]
  15. Noll D. C., Cohen J. D., Meyer C. H., Schneider W. Spiral K-space MR imaging of cortical activation. J Magn Reson Imaging. 1995 Jan-Feb;5(1):49–56. doi: 10.1002/jmri.1880050112. [DOI] [PubMed] [Google Scholar]
  16. Press W. A., Brewer A. A., Dougherty R. F., Wade A. R., Wandell B. A. Visual areas and spatial summation in human visual cortex. Vision Res. 2001;41(10-11):1321–1332. doi: 10.1016/s0042-6989(01)00074-8. [DOI] [PubMed] [Google Scholar]
  17. Smith A. T., Greenlee M. W., Singh K. D., Kraemer F. M., Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci. 1998 May 15;18(10):3816–3830. doi: 10.1523/JNEUROSCI.18-10-03816.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Teo P. C., Sapiro G., Wandell B. A. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imaging. 1997 Dec;16(6):852–863. doi: 10.1109/42.650881. [DOI] [PubMed] [Google Scholar]
  19. Tootell R. B., Mendola J. D., Hadjikhani N. K., Ledden P. J., Liu A. K., Reppas J. B., Sereno M. I., Dale A. M. Functional analysis of V3A and related areas in human visual cortex. J Neurosci. 1997 Sep 15;17(18):7060–7078. doi: 10.1523/JNEUROSCI.17-18-07060.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turner R., Howseman A., Rees G. E., Josephs O., Friston K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp Brain Res. 1998 Nov;123(1-2):5–12. doi: 10.1007/s002210050538. [DOI] [PubMed] [Google Scholar]
  21. Wandell B. A., Chial S., Backus B. T. Visualization and measurement of the cortical surface. J Cogn Neurosci. 2000 Sep;12(5):739–752. doi: 10.1162/089892900562561. [DOI] [PubMed] [Google Scholar]
  22. Wandell B. A. Computational neuroimaging of human visual cortex. Annu Rev Neurosci. 1999;22:145–173. doi: 10.1146/annurev.neuro.22.1.145. [DOI] [PubMed] [Google Scholar]
  23. Zeki S. A century of cerebral achromatopsia. Brain. 1990 Dec;113(Pt 6):1721–1777. doi: 10.1093/brain/113.6.1721. [DOI] [PubMed] [Google Scholar]
  24. Zeki S. Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience. 1983 Aug;9(4):767–781. doi: 10.1016/0306-4522(83)90266-x. [DOI] [PubMed] [Google Scholar]
  25. Zeki S. Localization and globalization in conscious vision. Annu Rev Neurosci. 2001;24:57–86. doi: 10.1146/annurev.neuro.24.1.57. [DOI] [PubMed] [Google Scholar]
  26. Zeki S. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc R Soc Lond B Biol Sci. 1983 Mar 22;217(1209):449–470. doi: 10.1098/rspb.1983.0020. [DOI] [PubMed] [Google Scholar]
  27. Zeki S., Watson J. D., Lueck C. J., Friston K. J., Kennard C., Frackowiak R. S. A direct demonstration of functional specialization in human visual cortex. J Neurosci. 1991 Mar;11(3):641–649. doi: 10.1523/JNEUROSCI.11-03-00641.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES