Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):1063–1072. doi: 10.1098/rstb.2002.1107

The role of attention in visual processing.

John H R Maunsell 1, Erik P Cook 1
PMCID: PMC1693016  PMID: 12217174

Abstract

Attention to a visual stimulus typically increases the responses of cortical neurons to that stimulus. Because many studies have shown a close relationship between the performance of individual neurons and behavioural performance of animal subjects, it is important to consider how attention affects this relationship. Measurements of behavioural and neuronal performance taken from rhesus monkeys while they performed a motion detection task with two attentional states show that attention alters the relationship between behaviour and neuronal response. Notably, attention affects the relationship differently in different cortical visual areas. This indicates that a close relationship between neuronal and behavioural performance on a given task persists over changes in attentional state only within limited regions of visual cortex.

Full Text

The Full Text of this article is available as a PDF (133.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahissar M., Hochstein S. Task difficulty and the specificity of perceptual learning. Nature. 1997 May 22;387(6631):401–406. doi: 10.1038/387401a0. [DOI] [PubMed] [Google Scholar]
  2. Albrecht D. G., Hamilton D. B. Striate cortex of monkey and cat: contrast response function. J Neurophysiol. 1982 Jul;48(1):217–237. doi: 10.1152/jn.1982.48.1.217. [DOI] [PubMed] [Google Scholar]
  3. Barlow H. B. The twelfth Bartlett memorial lecture: the role of single neurons in the psychology of perception. Q J Exp Psychol A. 1985 May;37(2):121–145. doi: 10.1080/14640748508400927. [DOI] [PubMed] [Google Scholar]
  4. Colby C. L., Duhamel J. R., Goldberg M. E. Ventral intraparietal area of the macaque: anatomic location and visual response properties. J Neurophysiol. 1993 Mar;69(3):902–914. doi: 10.1152/jn.1993.69.3.902. [DOI] [PubMed] [Google Scholar]
  5. Colby C. L., Goldberg M. E. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319–349. doi: 10.1146/annurev.neuro.22.1.319. [DOI] [PubMed] [Google Scholar]
  6. Connor C. E., Gallant J. L., Preddie D. C., Van Essen D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol. 1996 Mar;75(3):1306–1308. doi: 10.1152/jn.1996.75.3.1306. [DOI] [PubMed] [Google Scholar]
  7. Connor C. E., Preddie D. C., Gallant J. L., Van Essen D. C. Spatial attention effects in macaque area V4. J Neurosci. 1997 May 1;17(9):3201–3214. doi: 10.1523/JNEUROSCI.17-09-03201.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook Erik P., Maunsell John H. R. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 1;22(5):1994–2004. doi: 10.1523/JNEUROSCI.22-05-01994.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dean A. F. The variability of discharge of simple cells in the cat striate cortex. Exp Brain Res. 1981;44(4):437–440. doi: 10.1007/BF00238837. [DOI] [PubMed] [Google Scholar]
  10. Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
  11. Ferrera V. P., Rudolph K. K., Maunsell J. H. Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci. 1994 Oct;14(10):6171–6186. doi: 10.1523/JNEUROSCI.14-10-06171.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geisler W. S., Albrecht D. G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis Neurosci. 1997 Sep-Oct;14(5):897–919. doi: 10.1017/s0952523800011627. [DOI] [PubMed] [Google Scholar]
  13. Holub R. A., Morton-Gibson M. Response of Visual Cortical Neurons of the cat to moving sinusoidal gratings: response-contrast functions and spatiotemporal interactions. J Neurophysiol. 1981 Dec;46(6):1244–1259. doi: 10.1152/jn.1981.46.6.1244. [DOI] [PubMed] [Google Scholar]
  14. Lavie N., Tsal Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept Psychophys. 1994 Aug;56(2):183–197. doi: 10.3758/bf03213897. [DOI] [PubMed] [Google Scholar]
  15. Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
  16. Maunsell J. H., van Essen D. C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci. 1983 Dec;3(12):2563–2586. doi: 10.1523/JNEUROSCI.03-12-02563.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McAdams C. J., Maunsell J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 1;19(1):431–441. doi: 10.1523/JNEUROSCI.19-01-00431.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McAdams C. J., Maunsell J. H. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron. 1999 Aug;23(4):765–773. doi: 10.1016/s0896-6273(01)80034-9. [DOI] [PubMed] [Google Scholar]
  19. Mehta A. D., Ulbert I., Schroeder C. E. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb Cortex. 2000 Apr;10(4):343–358. doi: 10.1093/cercor/10.4.343. [DOI] [PubMed] [Google Scholar]
  20. Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
  21. Motter B. C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2190–2199. doi: 10.1523/JNEUROSCI.14-04-02190.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mountcastle V. B., Andersen R. A., Motter B. C. The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci. 1981 Nov;1(11):1218–1225. doi: 10.1523/JNEUROSCI.01-11-01218.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mountcastle V. B., Motter B. C., Steinmetz M. A., Sestokas A. K. Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. J Neurosci. 1987 Jul;7(7):2239–2255. doi: 10.1523/JNEUROSCI.07-07-02239.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parker A. J., Newsome W. T. Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci. 1998;21:227–277. doi: 10.1146/annurev.neuro.21.1.227. [DOI] [PubMed] [Google Scholar]
  25. Posner M. I. Orienting of attention. Q J Exp Psychol. 1980 Feb;32(1):3–25. doi: 10.1080/00335558008248231. [DOI] [PubMed] [Google Scholar]
  26. Reynolds J. H., Pasternak T., Desimone R. Attention increases sensitivity of V4 neurons. Neuron. 2000 Jun;26(3):703–714. doi: 10.1016/s0896-6273(00)81206-4. [DOI] [PubMed] [Google Scholar]
  27. Rodman H. R., Albright T. D. Coding of visual stimulus velocity in area MT of the macaque. Vision Res. 1987;27(12):2035–2048. doi: 10.1016/0042-6989(87)90118-0. [DOI] [PubMed] [Google Scholar]
  28. Roy J. P., Wurtz R. H. The role of disparity-sensitive cortical neurons in signalling the direction of self-motion. Nature. 1990 Nov 8;348(6297):160–162. doi: 10.1038/348160a0. [DOI] [PubMed] [Google Scholar]
  29. Sade A., Spitzer H. The effects of attentional spread and attentional effort on orientation discrimination. Spat Vis. 1998;11(4):367–383. doi: 10.1163/156856898x00086. [DOI] [PubMed] [Google Scholar]
  30. Schaafsma S. J., Duysens J., Gielen C. C. Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis Neurosci. 1997 Jul-Aug;14(4):633–646. doi: 10.1017/s0952523800012608. [DOI] [PubMed] [Google Scholar]
  31. Schaafsma S. J., Duysens J. Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J Neurophysiol. 1996 Dec;76(6):4056–4068. doi: 10.1152/jn.1996.76.6.4056. [DOI] [PubMed] [Google Scholar]
  32. Sclar G., Freeman R. D. Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Exp Brain Res. 1982;46(3):457–461. doi: 10.1007/BF00238641. [DOI] [PubMed] [Google Scholar]
  33. Skottun B. C., Bradley A., Sclar G., Ohzawa I., Freeman R. D. The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J Neurophysiol. 1987 Mar;57(3):773–786. doi: 10.1152/jn.1987.57.3.773. [DOI] [PubMed] [Google Scholar]
  34. Snowden R. J., Treue S., Andersen R. A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp Brain Res. 1992;88(2):389–400. doi: 10.1007/BF02259114. [DOI] [PubMed] [Google Scholar]
  35. Spitzer H., Desimone R., Moran J. Increased attention enhances both behavioral and neuronal performance. Science. 1988 Apr 15;240(4850):338–340. doi: 10.1126/science.3353728. [DOI] [PubMed] [Google Scholar]
  36. Spitzer H., Richmond B. J. Task difficulty: ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons. Exp Brain Res. 1991;83(2):340–348. doi: 10.1007/BF00231157. [DOI] [PubMed] [Google Scholar]
  37. Tolhurst D. J., Movshon J. A., Dean A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 1983;23(8):775–785. doi: 10.1016/0042-6989(83)90200-6. [DOI] [PubMed] [Google Scholar]
  38. Tolhurst D. J., Movshon J. A., Thompson I. D. The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast. Exp Brain Res. 1981;41(3-4):414–419. doi: 10.1007/BF00238900. [DOI] [PubMed] [Google Scholar]
  39. Treue S., Martínez Trujillo J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature. 1999 Jun 10;399(6736):575–579. doi: 10.1038/21176. [DOI] [PubMed] [Google Scholar]
  40. Treue S., Maunsell J. H. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999 Sep 1;19(17):7591–7602. doi: 10.1523/JNEUROSCI.19-17-07591.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ungerleider L. G., Desimone R. Cortical connections of visual area MT in the macaque. J Comp Neurol. 1986 Jun 8;248(2):190–222. doi: 10.1002/cne.902480204. [DOI] [PubMed] [Google Scholar]
  42. Urbach D., Spitzer H. Attentional effort modulated by task difficulty. Vision Res. 1995 Aug;35(15):2169–2177. doi: 10.1016/0042-6989(94)00305-x. [DOI] [PubMed] [Google Scholar]
  43. Vogels R., Orban G. A. Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. J Neurophysiol. 1994 Apr;71(4):1428–1451. doi: 10.1152/jn.1994.71.4.1428. [DOI] [PubMed] [Google Scholar]
  44. Zhang K., Sejnowski T. J. Neuronal tuning: To sharpen or broaden? Neural Comput. 1999 Jan 1;11(1):75–84. doi: 10.1162/089976699300016809. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES