Abstract
Colour and greyscale (black and white) pictures look different to us, but it is not clear whether the difference in appearance is a consequence of the way our visual system uses colour signals or a by-product of our experience. In principle, colour images are qualitatively different from greyscale images because they make it possible to use different processing strategies. Colour signals provide important cues for segmenting the image into areas that represent different objects and for linking together areas that represent the same object. If this property of colour signals is exploited in visual processing we would expect colour stimuli to look different, as a class, from greyscale stimuli. We would also expect that adding colour signals to greyscale signals should change the way that those signals are processed. We have investigated these questions in behavioural and in physiological experiments. We find that male marmosets (all of which are dichromats) rapidly learn to distinguish between colour and greyscale copies of the same images. The discrimination transfers to new image pairs, to new colours and to image pairs in which the colour and greyscale images are spatially different. We find that, in a proportion of neurons recorded in the marmoset visual cortex, colour-shifts in opposite directions produce similar enhancements of the response to a luminance stimulus. We conclude that colour is, both behaviourally and physiologically, a distinctive property of images.
Full Text
The Full Text of this article is available as a PDF (212.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Delorme A., Richard G., Fabre-Thorpe M. Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Res. 2000;40(16):2187–2200. doi: 10.1016/s0042-6989(00)00083-3. [DOI] [PubMed] [Google Scholar]
- Derrington A. M., Krauskopf J., Lennie P. Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol. 1984 Dec;357:241–265. doi: 10.1113/jphysiol.1984.sp015499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dias R., Robbins T. W., Roberts A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 1996 Mar 7;380(6569):69–72. doi: 10.1038/380069a0. [DOI] [PubMed] [Google Scholar]
- Dias R., Robbins T. W., Roberts A. C. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci. 1996 Oct;110(5):872–886. doi: 10.1037//0735-7044.110.5.872. [DOI] [PubMed] [Google Scholar]
- Fabre-Thorpe M., Richard G., Thorpe S. J. Rapid categorization of natural images by rhesus monkeys. Neuroreport. 1998 Jan 26;9(2):303–308. doi: 10.1097/00001756-199801260-00023. [DOI] [PubMed] [Google Scholar]
- Felisberti F., Derrington A. M. Long-range interactions in the lateral geniculate nucleus of the New-World monkey, Callithrix jacchus. Vis Neurosci. 2001 Mar-Apr;18(2):209–218. doi: 10.1017/s0952523801182064. [DOI] [PubMed] [Google Scholar]
- Gegenfurtner K. R., Rieger J. Sensory and cognitive contributions of color to the recognition of natural scenes. Curr Biol. 2000 Jun 29;10(13):805–808. doi: 10.1016/s0960-9822(00)00563-7. [DOI] [PubMed] [Google Scholar]
- Gegenfurtner K. R., Wichmann F. A., Sharpe L. T. The contribution of color to visual memory in X-chromosome-linked dichromats. Vision Res. 1998 Apr;38(7):1041–1045. doi: 10.1016/s0042-6989(97)00200-9. [DOI] [PubMed] [Google Scholar]
- Heywood C. A., Cowey A. On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J Neurosci. 1987 Sep;7(9):2601–2617. doi: 10.1523/JNEUROSCI.07-09-02601.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heywood C. A., Gadotti A., Cowey A. Cortical area V4 and its role in the perception of color. J Neurosci. 1992 Oct;12(10):4056–4065. doi: 10.1523/JNEUROSCI.12-10-04056.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt D. M., Williams A. J., Bowmaker J. K., Mollon J. D. Structure and evolution of the polymorphic photopigment gene of the marmoset. Vision Res. 1993 Jan;33(2):147–154. doi: 10.1016/0042-6989(93)90153-n. [DOI] [PubMed] [Google Scholar]
- Huxlin K. R., Saunders R. C., Marchionini D., Pham H. A., Merigan W. H. Perceptual deficits after lesions of inferotemporal cortex in macaques. Cereb Cortex. 2000 Jul;10(7):671–683. doi: 10.1093/cercor/10.7.671. [DOI] [PubMed] [Google Scholar]
- Jacobs G. H. The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc. 1993 Aug;68(3):413–471. doi: 10.1111/j.1469-185x.1993.tb00738.x. [DOI] [PubMed] [Google Scholar]
- Lennie P. Single units and visual cortical organization. Perception. 1998;27(8):889–935. doi: 10.1068/p270889. [DOI] [PubMed] [Google Scholar]
- Marr D. Early processing of visual information. Philos Trans R Soc Lond B Biol Sci. 1976 Oct 19;275(942):483–519. doi: 10.1098/rstb.1976.0090. [DOI] [PubMed] [Google Scholar]
- Marr D., Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):187–217. doi: 10.1098/rspb.1980.0020. [DOI] [PubMed] [Google Scholar]
- Mollon J. D. "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. J Exp Biol. 1989 Sep;146:21–38. doi: 10.1242/jeb.146.1.21. [DOI] [PubMed] [Google Scholar]
- Osorio D., Vorobyev M. Colour vision as an adaptation to frugivory in primates. Proc Biol Sci. 1996 May 22;263(1370):593–599. doi: 10.1098/rspb.1996.0089. [DOI] [PubMed] [Google Scholar]
- Regan B. C., Julliot C., Simmen B., Viénot F., Charles-Dominique P., Mollon J. D. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 1998 Nov;38(21):3321–3327. doi: 10.1016/s0042-6989(97)00462-8. [DOI] [PubMed] [Google Scholar]
- Stavenga D. G., Smits R. P., Hoenders B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 1993 May;33(8):1011–1017. doi: 10.1016/0042-6989(93)90237-q. [DOI] [PubMed] [Google Scholar]
- Sumner P., Mollon J. D. Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol. 2000 Jul;203(Pt 13):1963–1986. doi: 10.1242/jeb.203.13.1963. [DOI] [PubMed] [Google Scholar]
- Tovee M. J. The molecular genetics and evolution of primate colour vision. Trends Neurosci. 1994 Jan;17(1):30–37. doi: 10.1016/0166-2236(94)90032-9. [DOI] [PubMed] [Google Scholar]
- Tovée M. J., Bowmaker J. K., Mollon J. D. The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Res. 1992 May;32(5):867–878. doi: 10.1016/0042-6989(92)90029-i. [DOI] [PubMed] [Google Scholar]
- Travis D. S., Bowmaker J. K., Mollon J. D. Polymorphism of visual pigments in a callitrichid monkey. Vision Res. 1988;28(4):481–490. doi: 10.1016/0042-6989(88)90170-8. [DOI] [PubMed] [Google Scholar]
- Walsh V., Carden D., Butler S. R., Kulikowski J. J. The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behav Brain Res. 1993 Feb 26;53(1-2):51–62. doi: 10.1016/s0166-4328(05)80265-7. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N., Hubel D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966 Nov;29(6):1115–1156. doi: 10.1152/jn.1966.29.6.1115. [DOI] [PubMed] [Google Scholar]
- Zeki S. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience. 1983 Aug;9(4):741–765. doi: 10.1016/0306-4522(83)90265-8. [DOI] [PubMed] [Google Scholar]
- Zeki S. Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience. 1983 Aug;9(4):767–781. doi: 10.1016/0306-4522(83)90266-x. [DOI] [PubMed] [Google Scholar]