Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):1111–1121. doi: 10.1098/rstb.2002.1110

Against memory systems.

David Gaffan 1
PMCID: PMC1693020  PMID: 12217178

Abstract

The medial temporal lobe is indispensable for normal memory processing in both human and non-human primates, as is shown by the fact that large lesions in it produce a severe impairment in the acquisition of new memories. The widely accepted inference from this observation is that the medial temporal cortex, including the hippocampal, entorhinal and perirhinal cortex, contains a memory system or multiple memory systems, which are specialized for the acquisition and storage of memories. Nevertheless, there are some strong arguments against this idea: medial temporal lesions produce amnesia by disconnecting the entire temporal cortex from neuromodulatory afferents arising in the brainstem and basal forebrain, not by removing cortex; the temporal cortex is essential for perception as well as for memory; and response properties of temporal cortical neurons make it impossible that some kinds of memory trace could be stored in the temporal lobe. All cortex is plastic, and it is possible that the same rules of plasticity apply to all cortical areas; therefore, memory traces are stored in widespread cortical areas rather than in a specialized memory system restricted to the temporal lobe. Among these areas, the prefrontal cortex has an important role in learning and memory, but is best understood as an area with no specialization of function.

Full Text

The Full Text of this article is available as a PDF (136.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggleton J. P., Brown M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci. 1999 Jun;22(3):425–489. [PubMed] [Google Scholar]
  2. Aggleton J. P., McMackin D., Carpenter K., Hornak J., Kapur N., Halpin S., Wiles C. M., Kamel H., Brennan P., Carton S. Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix. Brain. 2000 Apr;123(Pt 4):800–815. doi: 10.1093/brain/123.4.800. [DOI] [PubMed] [Google Scholar]
  3. Baxter M. G., Murray E. A. Effects of hippocampal lesions on delayed nonmatching-to-sample in monkeys: a reply to Zola and Squire (2001). Hippocampus. 2001;11(3):201–203. doi: 10.1002/hipo.1037. [DOI] [PubMed] [Google Scholar]
  4. Baxter M. G., Murray E. A. Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus. 2001;11(1):61–71. doi: 10.1002/1098-1063(2001)11:1<61::AID-HIPO1021>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  5. Bogacz R., Brown M. W., Giraud-Carrier C. Model of familiarity discrimination in the perirhinal cortex. J Comput Neurosci. 2001 Jan-Feb;10(1):5–23. doi: 10.1023/a:1008925909305. [DOI] [PubMed] [Google Scholar]
  6. Brasted Peter J., Bussey Timothy J., Murray Elisabeth A., Wise Steven P. Fornix transection impairs conditional visuomotor learning in tasks involving nonspatially differentiated responses. J Neurophysiol. 2002 Jan;87(1):631–633. doi: 10.1152/jn.00656.2001. [DOI] [PubMed] [Google Scholar]
  7. Buckley M. J., Gaffan D. Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behav Neurosci. 1997 Jun;111(3):467–475. doi: 10.1037//0735-7044.111.3.467. [DOI] [PubMed] [Google Scholar]
  8. Buckley M. J., Gaffan D. Learning and transfer of object-reward associations and the role of the perirhinal cortex. Behav Neurosci. 1998 Feb;112(1):15–23. doi: 10.1037//0735-7044.112.1.15. [DOI] [PubMed] [Google Scholar]
  9. Buckley M. J., Gaffan D., Murray E. A. Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. J Neurophysiol. 1997 Feb;77(2):587–598. doi: 10.1152/jn.1997.77.2.587. [DOI] [PubMed] [Google Scholar]
  10. Buckley M. J., Gaffan D. Perirhinal cortex ablation impairs configural learning and paired-associate learning equally. Neuropsychologia. 1998 Jun;36(6):535–546. doi: 10.1016/s0028-3932(97)00120-6. [DOI] [PubMed] [Google Scholar]
  11. Buckley M. J., Gaffan D. Perirhinal cortex ablation impairs visual object identification. J Neurosci. 1998 Mar 15;18(6):2268–2275. doi: 10.1523/JNEUROSCI.18-06-02268.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chelazzi L., Duncan J., Miller E. K., Desimone R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol. 1998 Dec;80(6):2918–2940. doi: 10.1152/jn.1998.80.6.2918. [DOI] [PubMed] [Google Scholar]
  13. Chen N. H., White I. M., Wise S. P. Neuronal activity in dorsomedial frontal cortex and prefrontal cortex reflecting irrelevant stimulus dimensions. Exp Brain Res. 2001 Jul;139(1):116–119. doi: 10.1007/s002210100760. [DOI] [PubMed] [Google Scholar]
  14. Corkin S., Amaral D. G., González R. G., Johnson K. A., Hyman B. T. H. M.'s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci. 1997 May 15;17(10):3964–3979. doi: 10.1523/JNEUROSCI.17-10-03964.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Correll R. E., Scoville W. B. Effects of medial temporal lesions on visual discrimination performance. J Comp Physiol Psychol. 1965 Oct;60(2):175–181. doi: 10.1037/h0022290. [DOI] [PubMed] [Google Scholar]
  16. Cowey A. Sensory and non-sensory visual disorders in man and monkey. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 25;298(1089):3–13. doi: 10.1098/rstb.1982.0068. [DOI] [PubMed] [Google Scholar]
  17. Diamond B. J., DeLuca J., Kelley S. M. Memory and executive functions in amnesic and non-amnesic patients with aneurysms of the anterior communicating artery. Brain. 1997 Jun;120(Pt 6):1015–1025. doi: 10.1093/brain/120.6.1015. [DOI] [PubMed] [Google Scholar]
  18. Duncan J. An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci. 2001 Nov;2(11):820–829. doi: 10.1038/35097575. [DOI] [PubMed] [Google Scholar]
  19. Eacott M. J., Gaffan D., Murray E. A. Preserved recognition memory for small sets, and impaired stimulus identification for large sets, following rhinal cortex ablations in monkeys. Eur J Neurosci. 1994 Sep 1;6(9):1466–1478. doi: 10.1111/j.1460-9568.1994.tb01008.x. [DOI] [PubMed] [Google Scholar]
  20. Easton A., Gaffan D. Comparison of perirhinal cortex ablation and crossed unilateral lesions of the medial forebrain bundle from the inferior temporal cortex in the rhesus monkey: effects on learning and retrieval. Behav Neurosci. 2000 Dec;114(6):1041–1057. doi: 10.1037//0735-7044.114.6.1041. [DOI] [PubMed] [Google Scholar]
  21. Easton A., Gaffan D. Crossed unilateral lesions of the medial forebrain bundle and either inferior temporal or frontal cortex impair object-reward association learning in Rhesus monkeys. Neuropsychologia. 2001;39(1):71–82. doi: 10.1016/s0028-3932(00)00098-1. [DOI] [PubMed] [Google Scholar]
  22. Easton A., Parker A., Gaffan D. Crossed unilateral lesions of medial forebrain bundle and either inferior temporal or frontal cortex impair object recognition memory in Rhesus monkeys. Behav Brain Res. 2001 Jun;121(1-2):1–10. doi: 10.1016/s0166-4328(00)00384-3. [DOI] [PubMed] [Google Scholar]
  23. Easton A., Ridley R. M., Baker H. F., Gaffan D. Unilateral lesions of the cholinergic basal forebrain and fornix in one hemisphere and inferior temporal cortex in the opposite hemisphere produce severe learning impairments in rhesus monkeys. Cereb Cortex. 2002 Jul;12(7):729–736. doi: 10.1093/cercor/12.7.729. [DOI] [PubMed] [Google Scholar]
  24. Fernandez-Ruiz J., Wang J., Aigner T. G., Mishkin M. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4196–4201. doi: 10.1073/pnas.061022098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fiorentini A., Ghez C., Maffei L. Physiological correlates of adaptation to a rotated visual field. J Physiol. 1972 Dec;227(1):313–322. doi: 10.1113/jphysiol.1972.sp010034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gaffan D. Amnesia for Complex Naturalistic Scenes and for Objects Following Fornix Transection in the Rhesus Monkey. Eur J Neurosci. 1992;4(5):381–388. doi: 10.1111/j.1460-9568.1992.tb00886.x. [DOI] [PubMed] [Google Scholar]
  27. Gaffan D. Associative and perceptual learning and the concept of memory systems. Brain Res Cogn Brain Res. 1996 Dec;5(1-2):69–80. doi: 10.1016/s0926-6410(96)00042-0. [DOI] [PubMed] [Google Scholar]
  28. Gaffan D. Dissociated effects of perirhinal cortex ablation, fornix transection and amygdalectomy: evidence for multiple memory systems in the primate temporal lobe. Exp Brain Res. 1994;99(3):411–422. doi: 10.1007/BF00228977. [DOI] [PubMed] [Google Scholar]
  29. Gaffan D., Harrison S. A comparison of the effects of fornix transection and sulcus principalis ablation upon spatial learning by monkeys. Behav Brain Res. 1989 Jan 1;31(3):207–220. doi: 10.1016/0166-4328(89)90003-x. [DOI] [PubMed] [Google Scholar]
  30. Gaffan D., Harrison S. Place memory and scene memory: effects of fornix transection in the monkey. Exp Brain Res. 1989;74(1):202–212. doi: 10.1007/BF00248293. [DOI] [PubMed] [Google Scholar]
  31. Gaffan D. Hippocampus: memory, habit and voluntary movement. Philos Trans R Soc Lond B Biol Sci. 1985 Feb 13;308(1135):87–99. doi: 10.1098/rstb.1985.0012. [DOI] [PubMed] [Google Scholar]
  32. Gaffan D., Hornak J. Amnesia and neglect: beyond the Delay-Brion system and the Hebb synapse. Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1481–1488. doi: 10.1098/rstb.1997.0135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gaffan D., Lim C. Hippocampus and the blood supply to TE: parahippocampal pial section impairs visual discrimination learning in monkeys. Exp Brain Res. 1991;87(1):227–231. doi: 10.1007/BF00228525. [DOI] [PubMed] [Google Scholar]
  34. Gaffan D., Murray E. A. Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. Behav Neurosci. 1992 Feb;106(1):30–38. doi: 10.1037//0735-7044.106.1.30. [DOI] [PubMed] [Google Scholar]
  35. Gaffan D., Parker A., Easton A. Dense amnesia in the monkey after transection of fornix, amygdala and anterior temporal stem. Neuropsychologia. 2001;39(1):51–70. doi: 10.1016/s0028-3932(00)00097-x. [DOI] [PubMed] [Google Scholar]
  36. Gaffan D., Parker A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and "object-in-place" memory. J Neurosci. 1996 Sep 15;16(18):5864–5869. doi: 10.1523/JNEUROSCI.16-18-05864.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gaffan D., Parker A. Mediodorsal thalamic function in scene memory in rhesus monkeys. Brain. 2000 Apr;123(Pt 4):816–827. doi: 10.1093/brain/123.4.816. [DOI] [PubMed] [Google Scholar]
  38. Gaffan D., Saunders R. C., Gaffan E. A., Harrison S., Shields C., Owen M. J. Effects of fornix transection upon associative memory in monkeys: role of the hippocampus in learned action. Q J Exp Psychol B. 1984 Aug;36(3):173–221. doi: 10.1080/14640748408402203. [DOI] [PubMed] [Google Scholar]
  39. Gaffan D. What is a memory system? Horel's critique revisited. Behav Brain Res. 2001 Dec 14;127(1-2):5–11. doi: 10.1016/s0166-4328(01)00360-6. [DOI] [PubMed] [Google Scholar]
  40. Heywood C. A., Gaffan D., Cowey A. Cerebral achromatopsia in monkeys. Eur J Neurosci. 1995 May 1;7(5):1064–1073. doi: 10.1111/j.1460-9568.1995.tb01093.x. [DOI] [PubMed] [Google Scholar]
  41. Hodges J. R., McCarthy R. A. Autobiographical amnesia resulting from bilateral paramedian thalamic infarction. A case study in cognitive neurobiology. Brain. 1993 Aug;116(Pt 4):921–940. doi: 10.1093/brain/116.4.921. [DOI] [PubMed] [Google Scholar]
  42. Hood K. L., Postle B. R., Corkin S. An evaluation of the concurrent discrimination task as a measure of habit learning: performance of amnesic subjects. Neuropsychologia. 1999 Nov;37(12):1375–1386. doi: 10.1016/s0028-3932(99)00048-2. [DOI] [PubMed] [Google Scholar]
  43. Horel J. A. The neuroanatomy of amnesia. A critique of the hippocampal memory hypothesis. Brain. 1978 Sep;101(3):403–445. doi: 10.1093/brain/101.3.403. [DOI] [PubMed] [Google Scholar]
  44. Hornak J., Oxbury S., Oxbury J., Iversen S. D., Gaffan D. Hemifield-specific visual recognition memory impairments in patients with unilateral temporal lobe removals. Neuropsychologia. 1997 Sep;35(9):1311–1315. doi: 10.1016/s0028-3932(97)00062-6. [DOI] [PubMed] [Google Scholar]
  45. Jones E. G., Powell T. P. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93(4):793–820. doi: 10.1093/brain/93.4.793. [DOI] [PubMed] [Google Scholar]
  46. Kim J. J., Baxter M. G. Multiple brain-memory systems: the whole does not equal the sum of its parts. Trends Neurosci. 2001 Jun;24(6):324–330. doi: 10.1016/s0166-2236(00)01818-x. [DOI] [PubMed] [Google Scholar]
  47. Lennie P. Single units and visual cortical organization. Perception. 1998;27(8):889–935. doi: 10.1068/p270889. [DOI] [PubMed] [Google Scholar]
  48. Maclean C. J., Gaffan D., Baker H. F., Ridley R. M. Visual discrimination learning impairments produced by combined transections of the anterior temporal stem, amygdala and fornix in marmoset monkeys. Brain Res. 2001 Jan 5;888(1):34–50. doi: 10.1016/s0006-8993(00)02998-x. [DOI] [PubMed] [Google Scholar]
  49. Malamut B. L., Saunders R. C., Mishkin M. Monkeys with combined amygdalo-hippocampal lesions succeed in object discrimination learning despite 24-hour intertrial intervals. Behav Neurosci. 1984 Oct;98(5):759–769. doi: 10.1037//0735-7044.98.5.759. [DOI] [PubMed] [Google Scholar]
  50. Mesulam M. M. Cholinergic pathways and the ascending reticular activating system of the human brain. Ann N Y Acad Sci. 1995 May 10;757:169–179. doi: 10.1111/j.1749-6632.1995.tb17472.x. [DOI] [PubMed] [Google Scholar]
  51. Meunier M., Bachevalier J., Mishkin M., Murray E. A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci. 1993 Dec;13(12):5418–5432. doi: 10.1523/JNEUROSCI.13-12-05418.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Mishkin M. A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 25;298(1089):83–95. doi: 10.1098/rstb.1982.0074. [DOI] [PubMed] [Google Scholar]
  53. Murray E. A., Baxter M. G., Gaffan D. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav Neurosci. 1998 Dec;112(6):1291–1303. doi: 10.1037//0735-7044.112.6.1291. [DOI] [PubMed] [Google Scholar]
  54. Murray E. A., Gaffan D., Mishkin M. Neural substrates of visual stimulus-stimulus association in rhesus monkeys. J Neurosci. 1993 Oct;13(10):4549–4561. doi: 10.1523/JNEUROSCI.13-10-04549.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Murray E. A., Mishkin M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci. 1998 Aug 15;18(16):6568–6582. doi: 10.1523/JNEUROSCI.18-16-06568.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Murray EA, Bussey TJ. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn Sci. 1999 Apr;3(4):142–151. doi: 10.1016/s1364-6613(99)01303-0. [DOI] [PubMed] [Google Scholar]
  57. Naveh-Benjamin M., Craik F. I., Guez J., Dori H. Effects of divided attention on encoding and retrieval processes in human memory: further support for an asymmetry. J Exp Psychol Learn Mem Cogn. 1998 Sep;24(5):1091–1104. doi: 10.1037//0278-7393.24.5.1091. [DOI] [PubMed] [Google Scholar]
  58. ORBACH J., MILNER B., RASMUSSEN T. Learning and retention in monkeys after amygdala-hippocampus resection. Arch Neurol. 1960 Sep;3:230–251. doi: 10.1001/archneur.1960.00450030008002. [DOI] [PubMed] [Google Scholar]
  59. Oscar-Berman M., Zola-Morgan S. M. Comparative neuropsychology and Korsakoff's syndrome. II.--Two-choice visual discrimination learning. Neuropsychologia. 1980;18(4-5):513–525. doi: 10.1016/0028-3932(80)90153-0. [DOI] [PubMed] [Google Scholar]
  60. Parker A., Gaffan D. Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. Eur J Neurosci. 1998 Oct;10(10):3044–3057. doi: 10.1046/j.1460-9568.1998.00306.x. [DOI] [PubMed] [Google Scholar]
  61. Parker A., Gaffan D. Memory after frontal/temporal disconnection in monkeys: conditional and non-conditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia. 1998 Mar;36(3):259–271. doi: 10.1016/s0028-3932(97)00112-7. [DOI] [PubMed] [Google Scholar]
  62. Pascual-Leone A., Torres F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain. 1993 Feb;116(Pt 1):39–52. doi: 10.1093/brain/116.1.39. [DOI] [PubMed] [Google Scholar]
  63. Ridley R. M., Baker H. F. A critical evaluation of monkey models of amnesia and dementia. Brain Res Brain Res Rev. 1991 Jan-Apr;16(1):15–37. doi: 10.1016/0165-0173(91)90018-4. [DOI] [PubMed] [Google Scholar]
  64. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sakai K., Miyashita Y. Neural organization for the long-term memory of paired associates. Nature. 1991 Nov 14;354(6349):152–155. doi: 10.1038/354152a0. [DOI] [PubMed] [Google Scholar]
  66. Sakai K., Naya Y., Miyashita Y. Neuronal tuning and associative mechanisms in form representation. Learn Mem. 1994 Jul-Aug;1(2):83–105. [PubMed] [Google Scholar]
  67. Schoups A., Vogels R., Qian N., Orban G. Practising orientation identification improves orientation coding in V1 neurons. Nature. 2001 Aug 2;412(6846):549–553. doi: 10.1038/35087601. [DOI] [PubMed] [Google Scholar]
  68. Selden N. R., Gitelman D. R., Salamon-Murayama N., Parrish T. B., Mesulam M. M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998 Dec;121(Pt 12):2249–2257. doi: 10.1093/brain/121.12.2249. [DOI] [PubMed] [Google Scholar]
  69. Semba K. The cholinergic basal forebrain: a critical role in cortical arousal. Adv Exp Med Biol. 1991;295:197–218. doi: 10.1007/978-1-4757-0145-6_10. [DOI] [PubMed] [Google Scholar]
  70. Squire L. R., Zola-Morgan S. The medial temporal lobe memory system. Science. 1991 Sep 20;253(5026):1380–1386. doi: 10.1126/science.1896849. [DOI] [PubMed] [Google Scholar]
  71. Vanderwolf C. H., Cain D. P. The behavioral neurobiology of learning and memory: a conceptual reorientation. Brain Res Brain Res Rev. 1994 Aug;19(3):264–297. doi: 10.1016/0165-0173(94)90015-9. [DOI] [PubMed] [Google Scholar]
  72. Waelti P., Dickinson A., Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature. 2001 Jul 5;412(6842):43–48. doi: 10.1038/35083500. [DOI] [PubMed] [Google Scholar]
  73. Wallis J. D., Dias R., Robbins T. W., Roberts A. C. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur J Neurosci. 2001 May;13(9):1797–1808. doi: 10.1046/j.0953-816x.2001.01546.x. [DOI] [PubMed] [Google Scholar]
  74. Whishaw I. Q., Maaswinkel H. Rats with fimbria-fornix lesions are impaired in path integration: a role for the hippocampus in "sense of direction". J Neurosci. 1998 Apr 15;18(8):3050–3058. doi: 10.1523/JNEUROSCI.18-08-03050.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wise S. P., Murray E. A., Gerfen C. R. The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol. 1996;10(3-4):317–356. doi: 10.1615/critrevneurobiol.v10.i3-4.30. [DOI] [PubMed] [Google Scholar]
  76. Zola S. M., Squire L. R. Relationship between magnitude of damage to the hippocampus and impaired recognition memory in monkeys. Hippocampus. 2001;11(2):92–98. doi: 10.1002/hipo.1027. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES