Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Aug 29;357(1424):1073–1082. doi: 10.1098/rstb.2002.1098

The neural selection and control of saccades by the frontal eye field.

Jeffrey D Schall 1
PMCID: PMC1693021  PMID: 12217175

Abstract

Recent research has provided new insights into the neural processes that select the target for and control the production of a shift of gaze. Being a key node in the network that subserves visual processing and saccade production, the frontal eye field (FEF) has been an effective area in which to monitor these processes. Certain neurons in the FEF signal the location of conspicuous or meaningful stimuli that may be the targets for saccades. Other neurons control whether and when the gaze shifts. The existence of distinct neural processes for visual selection and saccade production is necessary to explain the flexibility of visually guided behaviour.

Full Text

The Full Text of this article is available as a PDF (232.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon W. F., Egeth H. E. Overriding stimulus-driven attentional capture. Percept Psychophys. 1994 May;55(5):485–496. doi: 10.3758/bf03205306. [DOI] [PubMed] [Google Scholar]
  2. Baizer J. S., Ungerleider L. G., Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci. 1991 Jan;11(1):168–190. doi: 10.1523/JNEUROSCI.11-01-00168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barone P., Batardiere A., Knoblauch K., Kennedy H. Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci. 2000 May 1;20(9):3263–3281. doi: 10.1523/JNEUROSCI.20-09-03263.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basso M. A., Wurtz R. H. Modulation of neuronal activity in superior colliculus by changes in target probability. J Neurosci. 1998 Sep 15;18(18):7519–7534. doi: 10.1523/JNEUROSCI.18-18-07519.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bichot N. P., Chenchal Rao S., Schall J. D. Continuous processing in macaque frontal cortex during visual search. Neuropsychologia. 2001;39(9):972–982. doi: 10.1016/s0028-3932(01)00022-7. [DOI] [PubMed] [Google Scholar]
  6. Bichot N. P., Schall J. D. Effects of similarity and history on neural mechanisms of visual selection. Nat Neurosci. 1999 Jun;2(6):549–554. doi: 10.1038/9205. [DOI] [PubMed] [Google Scholar]
  7. Bichot N. P., Schall J. D. Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci. 1999 Jan-Feb;16(1):81–89. doi: 10.1017/s0952523899161042. [DOI] [PubMed] [Google Scholar]
  8. Bichot N. P., Schall J. D., Thompson K. G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature. 1996 Jun 20;381(6584):697–699. doi: 10.1038/381697a0. [DOI] [PubMed] [Google Scholar]
  9. Bichot N. P., Thompson K. G., Chenchal Rao S., Schall J. D. Reliability of macaque frontal eye field neurons signaling saccade targets during visual search. J Neurosci. 2001 Jan 15;21(2):713–725. doi: 10.1523/JNEUROSCI.21-02-00713.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bruce C. J., Goldberg M. E., Bushnell M. C., Stanton G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol. 1985 Sep;54(3):714–734. doi: 10.1152/jn.1985.54.3.714. [DOI] [PubMed] [Google Scholar]
  11. Bruce C. J., Goldberg M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol. 1985 Mar;53(3):603–635. doi: 10.1152/jn.1985.53.3.603. [DOI] [PubMed] [Google Scholar]
  12. Burman D. D., Segraves M. A. Primate frontal eye field activity during natural scanning eye movements. J Neurophysiol. 1994 Mar;71(3):1266–1271. doi: 10.1152/jn.1994.71.3.1266. [DOI] [PubMed] [Google Scholar]
  13. Cabel D. W., Armstrong I. T., Reingold E., Munoz D. P. Control of saccade initiation in a countermanding task using visual and auditory stop signals. Exp Brain Res. 2000 Aug;133(4):431–441. doi: 10.1007/s002210000440. [DOI] [PubMed] [Google Scholar]
  14. Chapman P. R., Underwood G. Visual search of driving situations: danger and experience. Perception. 1998;27(8):951–964. doi: 10.1068/p270951. [DOI] [PubMed] [Google Scholar]
  15. Chelazzi L., Duncan J., Miller E. K., Desimone R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol. 1998 Dec;80(6):2918–2940. doi: 10.1152/jn.1998.80.6.2918. [DOI] [PubMed] [Google Scholar]
  16. Chelazzi L., Miller E. K., Duncan J., Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993 May 27;363(6427):345–347. doi: 10.1038/363345a0. [DOI] [PubMed] [Google Scholar]
  17. Constantinidis C., Steinmetz M. A. Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. Cereb Cortex. 2001 Jul;11(7):581–591. doi: 10.1093/cercor/11.7.581. [DOI] [PubMed] [Google Scholar]
  18. Dias E. C., Kiesau M., Segraves M. A. Acute activation and inactivation of macaque frontal eye field with GABA-related drugs. J Neurophysiol. 1995 Dec;74(6):2744–2748. doi: 10.1152/jn.1995.74.6.2744. [DOI] [PubMed] [Google Scholar]
  19. Donders F. C. On the speed of mental processes. Acta Psychol (Amst) 1969;30:412–431. doi: 10.1016/0001-6918(69)90065-1. [DOI] [PubMed] [Google Scholar]
  20. Dorris M. C., Munoz D. P. Saccadic probability influences motor preparation signals and time to saccadic initiation. J Neurosci. 1998 Sep 1;18(17):7015–7026. doi: 10.1523/JNEUROSCI.18-17-07015.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dorris M. C., Paré M., Munoz D. P. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J Neurosci. 1997 Nov 1;17(21):8566–8579. doi: 10.1523/JNEUROSCI.17-21-08566.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Duncan J., Humphreys G. W. Visual search and stimulus similarity. Psychol Rev. 1989 Jul;96(3):433–458. doi: 10.1037/0033-295x.96.3.433. [DOI] [PubMed] [Google Scholar]
  23. Egeth H. E., Yantis S. Visual attention: control, representation, and time course. Annu Rev Psychol. 1997;48:269–297. doi: 10.1146/annurev.psych.48.1.269. [DOI] [PubMed] [Google Scholar]
  24. Everling S., Dorris M. C., Klein R. M., Munoz D. P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J Neurosci. 1999 Apr 1;19(7):2740–2754. doi: 10.1523/JNEUROSCI.19-07-02740.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Everling S., Munoz D. P. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J Neurosci. 2000 Jan 1;20(1):387–400. doi: 10.1523/JNEUROSCI.20-01-00387.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
  27. Findlay J. M. Saccade target selection during visual search. Vision Res. 1997 Mar;37(5):617–631. doi: 10.1016/s0042-6989(96)00218-0. [DOI] [PubMed] [Google Scholar]
  28. Gottlieb J. P., Kusunoki M., Goldberg M. E. The representation of visual salience in monkey parietal cortex. Nature. 1998 Jan 29;391(6666):481–484. doi: 10.1038/35135. [DOI] [PubMed] [Google Scholar]
  29. Hallett P. E., Adams B. D. The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Res. 1980;20(4):329–339. doi: 10.1016/0042-6989(80)90019-x. [DOI] [PubMed] [Google Scholar]
  30. Hanes D. P., Carpenter R. H. Countermanding saccades in humans. Vision Res. 1999 Aug;39(16):2777–2791. doi: 10.1016/s0042-6989(99)00011-5. [DOI] [PubMed] [Google Scholar]
  31. Hanes D. P., Patterson W. F., 2nd, Schall J. D. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J Neurophysiol. 1998 Feb;79(2):817–834. doi: 10.1152/jn.1998.79.2.817. [DOI] [PubMed] [Google Scholar]
  32. Hanes D. P., Schall J. D. Countermanding saccades in macaque. Vis Neurosci. 1995 Sep-Oct;12(5):929–937. doi: 10.1017/s0952523800009482. [DOI] [PubMed] [Google Scholar]
  33. Hanes D. P., Schall J. D. Neural control of voluntary movement initiation. Science. 1996 Oct 18;274(5286):427–430. doi: 10.1126/science.274.5286.427. [DOI] [PubMed] [Google Scholar]
  34. Hanes D. P., Thompson K. G., Schall J. D. Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res. 1995;103(1):85–96. doi: 10.1007/BF00241967. [DOI] [PubMed] [Google Scholar]
  35. Hasegawa R. P., Matsumoto M., Mikami A. Search target selection in monkey prefrontal cortex. J Neurophysiol. 2000 Sep;84(3):1692–1696. doi: 10.1152/jn.2000.84.3.1692. [DOI] [PubMed] [Google Scholar]
  36. Hooge I. T., Erkelens C. J. Control of fixation duration in a simple search task. Percept Psychophys. 1996 Oct;58(7):969–976. doi: 10.3758/bf03206825. [DOI] [PubMed] [Google Scholar]
  37. Huerta M. F., Krubitzer L. A., Kaas J. H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J Comp Neurol. 1987 Nov 15;265(3):332–361. doi: 10.1002/cne.902650304. [DOI] [PubMed] [Google Scholar]
  38. Huerta M. F., Krubitzer L. A., Kaas J. H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol. 1986 Nov 22;253(4):415–439. doi: 10.1002/cne.902530402. [DOI] [PubMed] [Google Scholar]
  39. Jouve B., Rosenstiehl P., Imbert M. A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. Cereb Cortex. 1998 Jan-Feb;8(1):28–39. doi: 10.1093/cercor/8.1.28. [DOI] [PubMed] [Google Scholar]
  40. Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
  41. Maljkovic V., Nakayama K. Priming of pop-out: I. Role of features. Mem Cognit. 1994 Nov;22(6):657–672. doi: 10.3758/bf03209251. [DOI] [PubMed] [Google Scholar]
  42. Maljkovic V., Nakayama K. Priming of pop-out: II. The role of position. Percept Psychophys. 1996 Oct;58(7):977–991. doi: 10.3758/bf03206826. [DOI] [PubMed] [Google Scholar]
  43. McPeek R. M., Maljkovic V., Nakayama K. Saccades require focal attention and are facilitated by a short-term memory system. Vision Res. 1999 Apr;39(8):1555–1566. doi: 10.1016/s0042-6989(98)00228-4. [DOI] [PubMed] [Google Scholar]
  44. Mohler C. W., Goldberg M. E., Wurtz R. H. Visual receptive fields of frontal eye field neurons. Brain Res. 1973 Oct 26;61:385–389. doi: 10.1016/0006-8993(73)90543-x. [DOI] [PubMed] [Google Scholar]
  45. Motter B. C., Belky E. J. The guidance of eye movements during active visual search. Vision Res. 1998 Jun;38(12):1805–1815. doi: 10.1016/s0042-6989(97)00349-0. [DOI] [PubMed] [Google Scholar]
  46. Motter B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2178–2189. doi: 10.1523/JNEUROSCI.14-04-02178.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Motter B. C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J Neurosci. 1994 Apr;14(4):2190–2199. doi: 10.1523/JNEUROSCI.14-04-02190.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Munoz D. P., Wurtz R. H. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol. 1993 Aug;70(2):559–575. doi: 10.1152/jn.1993.70.2.559. [DOI] [PubMed] [Google Scholar]
  49. Munoz D. P., Wurtz R. H. Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J Neurophysiol. 1995 Jun;73(6):2313–2333. doi: 10.1152/jn.1995.73.6.2313. [DOI] [PubMed] [Google Scholar]
  50. Murthy A., Thompson K. G., Schall J. D. Dynamic dissociation of visual selection from saccade programming in frontal eye field. J Neurophysiol. 2001 Nov;86(5):2634–2637. doi: 10.1152/jn.2001.86.5.2634. [DOI] [PubMed] [Google Scholar]
  51. Nodine C. F., Krupinski E. A. Perceptual skill, radiology expertise, and visual test performance with NINA and WALDO. Acad Radiol. 1998 Sep;5(9):603–612. doi: 10.1016/s1076-6332(98)80295-x. [DOI] [PubMed] [Google Scholar]
  52. Nodine C. F., Kundel H. L., Lauver S. C., Toto L. C. Nature of expertise in searching mammograms for breast masses. Acad Radiol. 1996 Dec;3(12):1000–1006. doi: 10.1016/s1076-6332(96)80032-8. [DOI] [PubMed] [Google Scholar]
  53. Ottes F. P., Van Gisbergen J. A., Eggermont J. J. Collicular involvement in a saccadic colour discrimination task. Exp Brain Res. 1987;66(3):465–478. doi: 10.1007/BF00270679. [DOI] [PubMed] [Google Scholar]
  54. Rainer G., Asaad W. F., Miller E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature. 1998 Jun 11;393(6685):577–579. doi: 10.1038/31235. [DOI] [PubMed] [Google Scholar]
  55. Riehle A., Requin J. The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex. Behav Brain Res. 1993 Feb 26;53(1-2):35–49. doi: 10.1016/s0166-4328(05)80264-5. [DOI] [PubMed] [Google Scholar]
  56. Sato T., Murthy A., Thompson K. G., Schall J. D. Search efficiency but not response interference affects visual selection in frontal eye field. Neuron. 2001 May;30(2):583–591. doi: 10.1016/s0896-6273(01)00304-x. [DOI] [PubMed] [Google Scholar]
  57. Schall J. D., Hanes D. P. Neural basis of saccade target selection in frontal eye field during visual search. Nature. 1993 Dec 2;366(6454):467–469. doi: 10.1038/366467a0. [DOI] [PubMed] [Google Scholar]
  58. Schall J. D., Hanes D. P., Thompson K. G., King D. J. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci. 1995 Oct;15(10):6905–6918. doi: 10.1523/JNEUROSCI.15-10-06905.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schall J. D., Morel A., King D. J., Bullier J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci. 1995 Jun;15(6):4464–4487. doi: 10.1523/JNEUROSCI.15-06-04464.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Schall J. D. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J Neurophysiol. 1991 Aug;66(2):559–579. doi: 10.1152/jn.1991.66.2.559. [DOI] [PubMed] [Google Scholar]
  61. Schall J. D., Thompson K. G. Neural selection and control of visually guided eye movements. Annu Rev Neurosci. 1999;22:241–259. doi: 10.1146/annurev.neuro.22.1.241. [DOI] [PubMed] [Google Scholar]
  62. Schiller P. H., Chou I. H. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci. 1998 Jul;1(3):248–253. doi: 10.1038/693. [DOI] [PubMed] [Google Scholar]
  63. Schiller P. H., Chou I. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in the rhesus monkey: 1. Single and sequential targets. Vision Res. 2000;40(10-12):1609–1626. doi: 10.1016/s0042-6989(00)00057-2. [DOI] [PubMed] [Google Scholar]
  64. Schiller P. H., Chou I. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets. Vision Res. 2000;40(10-12):1627–1638. doi: 10.1016/s0042-6989(00)00058-4. [DOI] [PubMed] [Google Scholar]
  65. Schiller P. H., Sandell J. H., Maunsell J. H. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol. 1987 Apr;57(4):1033–1049. doi: 10.1152/jn.1987.57.4.1033. [DOI] [PubMed] [Google Scholar]
  66. Schlag J., Schlag-Rey M. Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol. 1984 Jun;51(6):1175–1195. doi: 10.1152/jn.1984.51.6.1175. [DOI] [PubMed] [Google Scholar]
  67. Schmolesky M. T., Wang Y., Hanes D. P., Thompson K. G., Leutgeb S., Schall J. D., Leventhal A. G. Signal timing across the macaque visual system. J Neurophysiol. 1998 Jun;79(6):3272–3278. doi: 10.1152/jn.1998.79.6.3272. [DOI] [PubMed] [Google Scholar]
  68. Segraves M. A. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J Neurophysiol. 1992 Dec;68(6):1967–1985. doi: 10.1152/jn.1992.68.6.1967. [DOI] [PubMed] [Google Scholar]
  69. Segraves M. A., Goldberg M. E. Functional properties of corticotectal neurons in the monkey's frontal eye field. J Neurophysiol. 1987 Dec;58(6):1387–1419. doi: 10.1152/jn.1987.58.6.1387. [DOI] [PubMed] [Google Scholar]
  70. Sommer M. A., Tehovnik E. J. Reversible inactivation of macaque frontal eye field. Exp Brain Res. 1997 Sep;116(2):229–249. doi: 10.1007/pl00005752. [DOI] [PubMed] [Google Scholar]
  71. Sommer M. A., Wurtz R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol. 2000 Apr;83(4):1979–2001. doi: 10.1152/jn.2000.83.4.1979. [DOI] [PubMed] [Google Scholar]
  72. Sommer M. A., Wurtz R. H. Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophysiol. 1998 Dec;80(6):3331–3335. doi: 10.1152/jn.1998.80.6.3331. [DOI] [PubMed] [Google Scholar]
  73. Sommer M. A., Wurtz R. H. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J Neurophysiol. 2001 Apr;85(4):1673–1685. doi: 10.1152/jn.2001.85.4.1673. [DOI] [PubMed] [Google Scholar]
  74. Sparks D. L. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset. Brain Res. 1978 Nov 3;156(1):1–16. doi: 10.1016/0006-8993(78)90075-6. [DOI] [PubMed] [Google Scholar]
  75. Stanton G. B., Bruce C. J., Goldberg M. E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J Comp Neurol. 1995 Mar 6;353(2):291–305. doi: 10.1002/cne.903530210. [DOI] [PubMed] [Google Scholar]
  76. Stanton G. B., Bruce C. J., Goldberg M. E. Topography of projections to the frontal lobe from the macaque frontal eye fields. J Comp Neurol. 1993 Apr 8;330(2):286–301. doi: 10.1002/cne.903300209. [DOI] [PubMed] [Google Scholar]
  77. Thompson K. G., Bichot N. P., Schall J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophysiol. 1997 Feb;77(2):1046–1050. doi: 10.1152/jn.1997.77.2.1046. [DOI] [PubMed] [Google Scholar]
  78. Thompson K. G., Hanes D. P., Bichot N. P., Schall J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol. 1996 Dec;76(6):4040–4055. doi: 10.1152/jn.1996.76.6.4040. [DOI] [PubMed] [Google Scholar]
  79. Thompson K. G., Schall J. D. Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vision Res. 2000;40(10-12):1523–1538. doi: 10.1016/s0042-6989(99)00250-3. [DOI] [PubMed] [Google Scholar]
  80. Treisman A., Sato S. Conjunction search revisited. J Exp Psychol Hum Percept Perform. 1990 Aug;16(3):459–478. doi: 10.1037//0096-1523.16.3.459. [DOI] [PubMed] [Google Scholar]
  81. Viviani P. Eye movements in visual search: cognitive, perceptual and motor control aspects. Rev Oculomot Res. 1990;4:353–393. [PubMed] [Google Scholar]
  82. Wallis J. D., Anderson K. C., Miller E. K. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001 Jun 21;411(6840):953–956. doi: 10.1038/35082081. [DOI] [PubMed] [Google Scholar]
  83. White I. M., Wise S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res. 1999 Jun;126(3):315–335. doi: 10.1007/s002210050740. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES