Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Oct 29;357(1426):1471-9; discussion 1478-9, 1511. doi: 10.1098/rstb.2002.1142

The mechanism for proton-coupled electron transfer from tyrosine in a model complex and comparisons with Y(Z) oxidation in photosystem II.

Martin Sjödin 1, Stenbjörn Styring 1, Björn Akermark 1, Licheng Sun 1, Leif Hammarström 1
PMCID: PMC1693043  PMID: 12437887

Abstract

In the water-oxidizing reactions of photosystem II (PSII), a tyrosine residue plays a key part as an intermediate electron-transfer reactant between the primary donor chlorophylls (the pigment P(680)) and the water-oxidizing Mn cluster. The tyrosine is deprotonated upon oxidation, and the coupling between the proton reaction and electron transfer is of great mechanistic importance for the understanding of the water-oxidation mechanism. Within a programme on artificial photosynthesis, we have made and studied the proton-coupled tyrosine oxidation in a model system and been able to draw mechanistic conclusions that we use to interpret the analogous reactions in PSII.

Full Text

The Full Text of this article is available as a PDF (160.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlbrink R., Haumann M., Cherepanov D., Bögershausen O., Mulkidjanian A., Junge W. Function of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor. Biochemistry. 1998 Jan 27;37(4):1131–1142. doi: 10.1021/bi9719152. [DOI] [PubMed] [Google Scholar]
  2. Aubert C., Vos M. H., Mathis P., Eker A. P., Brettel K. Intraprotein radical transfer during photoactivation of DNA photolyase. Nature. 2000 Jun 1;405(6786):586–590. doi: 10.1038/35014644. [DOI] [PubMed] [Google Scholar]
  3. Diner B. A. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):147–163. doi: 10.1016/s0005-2728(00)00220-6. [DOI] [PubMed] [Google Scholar]
  4. Haumann M., Mulkidjanian A., Junge W. Tyrosine-Z in oxygen-evolving photosystem II: a hydrogen-bonded tyrosinate. Biochemistry. 1999 Jan 26;38(4):1258–1267. doi: 10.1021/bi981557i. [DOI] [PubMed] [Google Scholar]
  5. Hoganson C. W., Babcock G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science. 1997 Sep 26;277(5334):1953–1956. doi: 10.1126/science.277.5334.1953. [DOI] [PubMed] [Google Scholar]
  6. Rappaport F., Lavergne J. Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):246–259. doi: 10.1016/s0005-2728(00)00228-0. [DOI] [PubMed] [Google Scholar]
  7. Renger G. Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta. 2001 Jan 5;1503(1-2):210–228. doi: 10.1016/s0005-2728(00)00227-9. [DOI] [PubMed] [Google Scholar]
  8. Tommos C., Babcock G. T. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta. 2000 May 12;1458(1):199–219. doi: 10.1016/s0005-2728(00)00069-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES