Abstract
Thalamic function does not stand apart, as a discrete processing step, from the cortical circuitry. The thalamus receives extensive feedback from the cortex and this influences the firing pattern, synchronization and sensory response mode of relay cells. A crucial question concerns the extent to which the feedback simply controls the state and transmission mode of relay cells and the extent to which the feedback participates in the specific processing of sensory information. Using examples from experiments examining the influence of feedback from the visual cortex to the lateral geniculate nucleus (LGN), we argue that thalamic mechanisms are selectively focused by visually driven feedback to optimize the thalamic contribution to segmentation and global integration. This involves effects on both the temporal and spatial parameters characterizing the responses of LGN cells and includes, for example, motion-driven feedback effects from MT (middle temporal visual area) relayed via layer 6 of V1 (primary visual cortex).
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed B., Anderson J. C., Douglas R. J., Martin K. A., Nelson J. C. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol. 1994 Mar 1;341(1):39–49. doi: 10.1002/cne.903410105. [DOI] [PubMed] [Google Scholar]
- Anderson J. C., Martin K. A., Whitteridge D. Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. Cereb Cortex. 1993 Sep-Oct;3(5):412–420. doi: 10.1093/cercor/3.5.412. [DOI] [PubMed] [Google Scholar]
- Bowling D. B., Michael C. R. Terminal patterns of single, physiologically characterized optic tract fibers in the cat's lateral geniculate nucleus. J Neurosci. 1984 Jan;4(1):198–216. doi: 10.1523/JNEUROSCI.04-01-00198.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyapati J., Henry G. H. The duplex character of the corticofugal pathway from the striate cortex to the lateral geniculate complex of the cat. Vision Res. 1987;27(5):723–726. doi: 10.1016/0042-6989(87)90069-1. [DOI] [PubMed] [Google Scholar]
- Boyapati J., Henry G. Corticofugal axons in the lateral geniculate nucleus of the cat. Exp Brain Res. 1984;53(2):335–340. doi: 10.1007/BF00238163. [DOI] [PubMed] [Google Scholar]
- Callaway E. M. Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci. 1998;21:47–74. doi: 10.1146/annurev.neuro.21.1.47. [DOI] [PubMed] [Google Scholar]
- Cudeiro J., Sillito A. M. Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol. 1996 Jan 15;490(Pt 2):481–492. doi: 10.1113/jphysiol.1996.sp021159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding Y., Casagrande V. A. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci. 1997 Jul-Aug;14(4):691–704. doi: 10.1017/s0952523800012657. [DOI] [PubMed] [Google Scholar]
- Dow B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J Neurophysiol. 1974 Sep;37(5):927–946. doi: 10.1152/jn.1974.37.5.927. [DOI] [PubMed] [Google Scholar]
- Erişir A., Van Horn S. C., Sherman S. M. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1517–1520. doi: 10.1073/pnas.94.4.1517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick D., Usrey W. M., Schofield B. R., Einstein G. The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci. 1994 Mar-Apr;11(2):307–315. doi: 10.1017/s0952523800001656. [DOI] [PubMed] [Google Scholar]
- Gerstein G. L., Kirkland K. L., Musial P. G., Talwar S. K. Recordings, behaviour and models related to corticothalamic feedback. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1835–1841. doi: 10.1098/rstb.2002.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert C. D. Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol. 1977 Jun;268(2):391–421. doi: 10.1113/jphysiol.1977.sp011863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grieve K. L., Sillito A. M. A re-appraisal of the role of layer VI of the visual cortex in the generation of cortical end inhibition. Exp Brain Res. 1991;87(3):521–529. doi: 10.1007/BF00227077. [DOI] [PubMed] [Google Scholar]
- Grieve K. L., Sillito A. M. Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J Neurosci. 1995 Jul;15(7 Pt 1):4868–4874. doi: 10.1523/JNEUROSCI.15-07-04868.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grieve K. L., Sillito A. M. Non-length-tuned cells in layers II/III and IV of the visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths. Exp Brain Res. 1995;104(1):12–20. doi: 10.1007/BF00229851. [DOI] [PubMed] [Google Scholar]
- Grieve K. L., Sillito A. M. The length summation properties of layer VI cells in the visual cortex and hypercomplex cell end zone inhibition. Exp Brain Res. 1991;84(2):319–325. doi: 10.1007/BF00231452. [DOI] [PubMed] [Google Scholar]
- Guido W., Weyand T. Burst responses in thalamic relay cells of the awake behaving cat. J Neurophysiol. 1995 Oct;74(4):1782–1786. doi: 10.1152/jn.1995.74.4.1782. [DOI] [PubMed] [Google Scholar]
- Harvey A. R. A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J Physiol. 1980 May;302:507–534. doi: 10.1113/jphysiol.1980.sp013258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawken M. J., Parker A. J., Lund J. S. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J Neurosci. 1988 Oct;8(10):3541–3548. doi: 10.1523/JNEUROSCI.08-10-03541.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendry S. H., Yoshioka T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science. 1994 Apr 22;264(5158):575–577. doi: 10.1126/science.8160015. [DOI] [PubMed] [Google Scholar]
- Jones E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 2001 Oct;24(10):595–601. doi: 10.1016/s0166-2236(00)01922-6. [DOI] [PubMed] [Google Scholar]
- Jones H. E., Andolina I. M., Oakely N. M., Murphy P. C., Sillito A. M. Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res. 2000 Nov;135(2):279–284. doi: 10.1007/s002210000574. [DOI] [PubMed] [Google Scholar]
- Latawiec D., Martin K. A., Meskenaite V. Termination of the geniculocortical projection in the striate cortex of macaque monkey: a quantitative immunoelectron microscopic study. J Comp Neurol. 2000 Apr 10;419(3):306–319. doi: 10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
- Livingstone M. S., Hubel D. H. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci. 1984 Jan;4(1):309–356. doi: 10.1523/JNEUROSCI.04-01-00309.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick D. A., Bal T. Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci. 1997;20:185–215. doi: 10.1146/annurev.neuro.20.1.185. [DOI] [PubMed] [Google Scholar]
- Murphy P. C., Duckett S. G., Sillito A. M. Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci. 2000 Jan 15;20(2):845–853. doi: 10.1523/JNEUROSCI.20-02-00845.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy P. C., Duckett S. G., Sillito A. M. Feedback connections to the lateral geniculate nucleus and cortical response properties. Science. 1999 Nov 19;286(5444):1552–1554. doi: 10.1126/science.286.5444.1552. [DOI] [PubMed] [Google Scholar]
- Murphy P. C., Sillito A. M. Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature. 1987 Oct 22;329(6141):727–729. doi: 10.1038/329727a0. [DOI] [PubMed] [Google Scholar]
- Murphy P. C., Sillito A. M. Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci. 1996 Feb 1;16(3):1180–1192. doi: 10.1523/JNEUROSCI.16-03-01180.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orban G. A., Kennedy H., Bullier J. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. J Neurophysiol. 1986 Aug;56(2):462–480. doi: 10.1152/jn.1986.56.2.462. [DOI] [PubMed] [Google Scholar]
- Raiguel S. E., Lagae L., Gulyàs B., Orban G. A. Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res. 1989 Jul 24;493(1):155–159. doi: 10.1016/0006-8993(89)91010-x. [DOI] [PubMed] [Google Scholar]
- Ramcharan E. J., Gnadt J. W., Sherman S. M. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci. 2000 Jan-Feb;17(1):55–62. doi: 10.1017/s0952523800171056. [DOI] [PubMed] [Google Scholar]
- Robson J. A. Reconstructions of corticogeniculate axons in the cat. J Comp Neurol. 1984 May 10;225(2):193–200. doi: 10.1002/cne.902250205. [DOI] [PubMed] [Google Scholar]
- Robson J. A. The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. J Comp Neurol. 1983 May 1;216(1):89–103. doi: 10.1002/cne.902160108. [DOI] [PubMed] [Google Scholar]
- Rockland K. S., Knutson T. Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol. 2000 Sep 25;425(3):345–368. [PubMed] [Google Scholar]
- Rowe M. H., Fischer Q. Dynamic properties of retino-geniculate synapses in the cat. Vis Neurosci. 2001 Mar-Apr;18(2):219–231. doi: 10.1017/s0952523801182076. [DOI] [PubMed] [Google Scholar]
- Sceniak M. P., Hawken M. J., Shapley R. Visual spatial characterization of macaque V1 neurons. J Neurophysiol. 2001 May;85(5):1873–1887. doi: 10.1152/jn.2001.85.5.1873. [DOI] [PubMed] [Google Scholar]
- Sceniak M. P., Ringach D. L., Hawken M. J., Shapley R. Contrast's effect on spatial summation by macaque V1 neurons. Nat Neurosci. 1999 Aug;2(8):733–739. doi: 10.1038/11197. [DOI] [PubMed] [Google Scholar]
- Schiller P. H., Finlay B. L., Volman S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol. 1976 Nov;39(6):1288–1319. doi: 10.1152/jn.1976.39.6.1288. [DOI] [PubMed] [Google Scholar]
- Sherman S. M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001 Feb;24(2):122–126. doi: 10.1016/s0166-2236(00)01714-8. [DOI] [PubMed] [Google Scholar]
- Shipp S., Zeki S. The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. Eur J Neurosci. 1989;1(4):309–332. doi: 10.1111/j.1460-9568.1989.tb00798.x. [DOI] [PubMed] [Google Scholar]
- Sillito A. M., Cudeiro J., Murphy P. C. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res. 1993;93(1):6–16. doi: 10.1007/BF00227775. [DOI] [PubMed] [Google Scholar]
- Steriade M., McCormick D. A., Sejnowski T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993 Oct 29;262(5134):679–685. doi: 10.1126/science.8235588. [DOI] [PubMed] [Google Scholar]
- Tsumoto T., Creutzfeldt O. D., Legéndy C. R. Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Exp Brain Res. 1978 Jul 14;32(3):345–364. doi: 10.1007/BF00238707. [DOI] [PubMed] [Google Scholar]
- Tsumoto T., Suda K. Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. J Comp Neurol. 1980 Sep 1;193(1):223–236. doi: 10.1002/cne.901930115. [DOI] [PubMed] [Google Scholar]
- Usrey W. M., Alonso J. M., Reid R. C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci. 2000 Jul 15;20(14):5461–5467. doi: 10.1523/JNEUROSCI.20-14-05461.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Horn S. C., Erişir A., Sherman S. M. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol. 2000 Jan 24;416(4):509–520. [PubMed] [Google Scholar]
- Wilson J. R. Circuitry of the dorsal lateral geniculate nucleus in the cat and monkey. Acta Anat (Basel) 1993;147(1):1–13. doi: 10.1159/000147475. [DOI] [PubMed] [Google Scholar]
- Wiser A. K., Callaway E. M. Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex. J Neurosci. 1996 Apr 15;16(8):2724–2739. doi: 10.1523/JNEUROSCI.16-08-02724.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Krosigk M., Monckton J. E., Reiner P. B., McCormick D. A. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience. 1999;91(1):7–20. doi: 10.1016/s0306-4522(98)00557-0. [DOI] [PubMed] [Google Scholar]