Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Dec 29;357(1428):1695–1708. doi: 10.1098/rstb.2002.1161

The role of the thalamus in the flow of information to the cortex.

S Murray Sherman 1, R W Guillery 1
PMCID: PMC1693087  PMID: 12626004

Abstract

The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory inputs control many features of retinogeniculate transmission. One such feature is the response mode, burst or tonic, of relay cells, which relates to the attentional demands at the moment. This response mode depends on membrane potential, which is controlled effectively by the modulator inputs. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to the cortex for the first time. By contrast, the other main thalamic relay of visual information, the pulvinar region, is largely a higher-order relay, since much of it relays information from layer 5 of one cortical area to another. All thalamic relays receive a layer-6 modulatory input from cortex, but higher-order relays in addition receive a layer-5 driver input. Corticocortical processing may involve these corticothalamocortical 're-entry' routes to a far greater extent than previously appreciated. If so, the thalamus sits at an indispensable position for the modulation of messages involved in corticocortical processing.

Full Text

The Full Text of this article is available as a PDF (682.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson B. P., Chalupa L. M. The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus. Neuroscience. 1985 May;15(1):81–95. doi: 10.1016/0306-4522(85)90125-3. [DOI] [PubMed] [Google Scholar]
  2. Adams M. M., Hof P. R., Gattass R., Webster M. J., Ungerleider L. G. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol. 2000 Apr 10;419(3):377–393. doi: 10.1002/(sici)1096-9861(20000410)419:3<377::aid-cne9>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  3. Ahmed B., Anderson J. C., Douglas R. J., Martin K. A., Nelson J. C. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol. 1994 Mar 1;341(1):39–49. doi: 10.1002/cne.903410105. [DOI] [PubMed] [Google Scholar]
  4. Arcelli P., Frassoni C., Regondi M. C., De Biasi S., Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull. 1997;42(1):27–37. doi: 10.1016/s0361-9230(96)00107-4. [DOI] [PubMed] [Google Scholar]
  5. Bender D. B. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res. 1983 Nov 21;279(1-2):258–261. doi: 10.1016/0006-8993(83)90188-9. [DOI] [PubMed] [Google Scholar]
  6. Berson D. M., Graybiel A. M. Organization of the striate-recipient zone of the cats lateralis posterior-pulvinar complex and its relations with the geniculostriate system. Neuroscience. 1983 Jun;9(2):337–372. doi: 10.1016/0306-4522(83)90299-3. [DOI] [PubMed] [Google Scholar]
  7. Bloomfield S. A., Hamos J. E., Sherman S. M. Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J Physiol. 1987 Feb;383:653–692. doi: 10.1113/jphysiol.1987.sp016435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bloomfield S. A., Sherman S. M. Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1989 May;86(10):3911–3914. doi: 10.1073/pnas.86.10.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bourassa J., Deschênes M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience. 1995 May;66(2):253–263. doi: 10.1016/0306-4522(95)00009-8. [DOI] [PubMed] [Google Scholar]
  10. Bourassa J., Pinault D., Deschênes M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci. 1995 Jan 1;7(1):19–30. doi: 10.1111/j.1460-9568.1995.tb01016.x. [DOI] [PubMed] [Google Scholar]
  11. Brown D. A., Abogadie F. C., Allen T. G., Buckley N. J., Caulfield M. P., Delmas P., Haley J. E., Lamas J. A., Selyanko A. A. Muscarinic mechanisms in nerve cells. Life Sci. 1997;60(13-14):1137–1144. doi: 10.1016/s0024-3205(97)00058-1. [DOI] [PubMed] [Google Scholar]
  12. Carden Wm Breckinridge, Bickford Martha E. Synaptic inputs of class III and class V interneurons in the cat pulvinar nucleus: differential integration of RS and RL inputs. Vis Neurosci. 2002 Jan-Feb;19(1):51–59. doi: 10.1017/s0952523801191054. [DOI] [PubMed] [Google Scholar]
  13. Casanova C., Freeman R. D., Nordmann J. P. Monocular and binocular response properties of cells in the striate-recipient zone of the cat's lateral posterior-pulvinar complex. J Neurophysiol. 1989 Aug;62(2):544–557. doi: 10.1152/jn.1989.62.2.544. [DOI] [PubMed] [Google Scholar]
  14. Chalupa L. M., Abramson B. P. Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex. J Neurosci. 1989 Jan;9(1):347–357. doi: 10.1523/JNEUROSCI.09-01-00347.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chalupa L. M., Anchel H., Lindsley D. B. Visual input to the pulvinar via lateral geniculate, superior colliculus and visual cortex in the cat. Exp Neurol. 1972 Sep;36(3):449–462. doi: 10.1016/0014-4886(72)90005-2. [DOI] [PubMed] [Google Scholar]
  16. Chung S., Ferster D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron. 1998 Jun;20(6):1177–1189. doi: 10.1016/s0896-6273(00)80498-5. [DOI] [PubMed] [Google Scholar]
  17. Conn P. J., Pin J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–237. doi: 10.1146/annurev.pharmtox.37.1.205. [DOI] [PubMed] [Google Scholar]
  18. Cox C. L., Sherman S. M. Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron. 2000 Sep;27(3):597–610. doi: 10.1016/s0896-6273(00)00069-6. [DOI] [PubMed] [Google Scholar]
  19. Darian-Smith C., Tan A., Edwards S. Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J Comp Neurol. 1999 Jul 26;410(2):211–234. [PubMed] [Google Scholar]
  20. Deschênes M., Bourassa J., Pinault D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 1994 Nov 21;664(1-2):215–219. doi: 10.1016/0006-8993(94)91974-7. [DOI] [PubMed] [Google Scholar]
  21. Destexhe A., Neubig M., Ulrich D., Huguenard J. Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci. 1998 May 15;18(10):3574–3588. doi: 10.1523/JNEUROSCI.18-10-03574.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Diamond M. E., Armstrong-James M., Budway M. J., Ebner F. F. Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol. 1992 May 1;319(1):66–84. doi: 10.1002/cne.903190108. [DOI] [PubMed] [Google Scholar]
  23. Erişir A., Van Horn S. C., Bickford M. E., Sherman S. M. Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol. 1997 Jan 27;377(4):535–549. [PubMed] [Google Scholar]
  24. Feig S., Harting J. K. Corticocortical communication via the thalamus: ultrastructural studies of corticothalamic projections from area 17 to the lateral posterior nucleus of the cat and inferior pulvinar nucleus of the owl monkey. J Comp Neurol. 1998 Jun 8;395(3):281–295. doi: 10.1002/(sici)1096-9861(19980808)395:3<281::aid-cne2>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  25. Ferster D., Chung S., Wheat H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature. 1996 Mar 21;380(6571):249–252. doi: 10.1038/380249a0. [DOI] [PubMed] [Google Scholar]
  26. Gilbert C. D., Kelly J. P. The projections of cells in different layers of the cat's visual cortex. J Comp Neurol. 1975 Sep;163(1):81–105. doi: 10.1002/cne.901630106. [DOI] [PubMed] [Google Scholar]
  27. Graybiel Ann M., Saka Esen. A genetic basis for obsessive grooming. Neuron. 2002 Jan 3;33(1):1–2. doi: 10.1016/s0896-6273(01)00575-x. [DOI] [PubMed] [Google Scholar]
  28. Guillery R. W. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat. 1995 Dec;187(Pt 3):583–592. [PMC free article] [PubMed] [Google Scholar]
  29. Guillery R. W., Feig S. L., Van Lieshout D. P. Connections of higher order visual relays in the thalamus: a study of corticothalamic pathways in cats. J Comp Neurol. 2001 Sep 10;438(1):66–85. doi: 10.1002/cne.1302. [DOI] [PubMed] [Google Scholar]
  30. Guillery R. W. The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat. 1969;96(1):1–38. doi: 10.1007/BF00321474. [DOI] [PubMed] [Google Scholar]
  31. Gutierrez C., Cola M. G., Seltzer B., Cusick C. Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol. 2000 Mar 27;419(1):61–86. doi: 10.1002/(sici)1096-9861(20000327)419:1<61::aid-cne4>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  32. Hammerstad J. P., Murray J. E., Cutler R. W. Efflux of amino acid neurotransmitters from rat spinal cord slices. II. Factors influencing the electrically induced efflux of ( 14 C)glycine and 3 H-GABA. Brain Res. 1971 Dec 24;35(2):357–367. doi: 10.1016/0006-8993(71)90480-x. [DOI] [PubMed] [Google Scholar]
  33. Harding B. N. An ultrastructural study of the termination of afferent fibres within the ventrolateral and centre median nuclei of the monkey thalamus. Brain Res. 1973 May 17;54:341–346. doi: 10.1016/0006-8993(73)90058-9. [DOI] [PubMed] [Google Scholar]
  34. Heath C. J., Jones E. G. The anatomical organization of the suprasylvian gyrus of the cat. Ergeb Anat Entwicklungsgesch. 1971;45(3):3–64. [PubMed] [Google Scholar]
  35. Hendry S. H., Reid R. C. The koniocellular pathway in primate vision. Annu Rev Neurosci. 2000;23:127–153. doi: 10.1146/annurev.neuro.23.1.127. [DOI] [PubMed] [Google Scholar]
  36. Ilinsky I. A., Kultas-Ilinsky K. Fine structure of the magnocellular subdivision of the ventral anterior thalamic nucleus (VAmc) of Macaca mulatta: I. Cell types and synaptology. J Comp Neurol. 1990 Apr 15;294(3):455–478. doi: 10.1002/cne.902940313. [DOI] [PubMed] [Google Scholar]
  37. Itaya S. K., Van Hoesen G. W. Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey. Brain Res. 1983 Jun 20;269(2):223–230. doi: 10.1016/0006-8993(83)90131-2. [DOI] [PubMed] [Google Scholar]
  38. Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Jones E. G., Powell T. P. Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat. Proc R Soc Lond B Biol Sci. 1969 Mar 11;172(1027):153–171. doi: 10.1098/rspb.1969.0017. [DOI] [PubMed] [Google Scholar]
  40. Jones E. G., Rockel A. J. The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Z Zellforsch Mikrosk Anat. 1971;113(1):44–66. doi: 10.1007/BF00331201. [DOI] [PubMed] [Google Scholar]
  41. Jones Edward G. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1659–1673. doi: 10.1098/rstb.2002.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kaplan E., Purpura K., Shapley R. M. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol. 1987 Oct;391:267–288. doi: 10.1113/jphysiol.1987.sp016737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kaufman E. F., Rosenquist A. C., Raczkowski D. The projections of single thalamic neurons onto multiple visual cortical areas in the cat. Brain Res. 1984 Apr 23;298(1):171–174. doi: 10.1016/0006-8993(84)91164-8. [DOI] [PubMed] [Google Scholar]
  44. Kawamura S., Sprague J. M., Niimi K. Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol. 1974 Dec 1;158(3):339–362. doi: 10.1002/cne.901580308. [DOI] [PubMed] [Google Scholar]
  45. Latawiec D., Martin K. A., Meskenaite V. Termination of the geniculocortical projection in the striate cortex of macaque monkey: a quantitative immunoelectron microscopic study. J Comp Neurol. 2000 Apr 10;419(3):306–319. doi: 10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  46. Mason R. Differential responsiveness of cells in the visual zones of the cat's LP-pulvinar complex to visual stimuli. Exp Brain Res. 1981;43(1):25–33. doi: 10.1007/BF00238806. [DOI] [PubMed] [Google Scholar]
  47. Mathers L. H. The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. J Comp Neurol. 1972 Sep;146(1):43–60. doi: 10.1002/cne.901460104. [DOI] [PubMed] [Google Scholar]
  48. Merabet L., Desautels A., Minville K., Casanova C. Motion integration in a thalamic visual nucleus. Nature. 1998 Nov 19;396(6708):265–268. doi: 10.1038/24382. [DOI] [PubMed] [Google Scholar]
  49. Miceli D., Repérant J., Marchand L., Ward R., Vesselkin N. Divergence and collateral axon branching in subsystems of visual cortical projections from the cat lateral posterior nucleus. J Hirnforsch. 1991;32(2):165–173. [PubMed] [Google Scholar]
  50. Mott D. D., Lewis D. V. The pharmacology and function of central GABAB receptors. Int Rev Neurobiol. 1994;36:97–223. doi: 10.1016/s0074-7742(08)60304-9. [DOI] [PubMed] [Google Scholar]
  51. Nakagawa S., Tanaka S. Retinal projections to the pulvinar nucleus of the macaque monkey: a re-investigation using autoradiography. Exp Brain Res. 1984;57(1):151–157. doi: 10.1007/BF00231141. [DOI] [PubMed] [Google Scholar]
  52. Nicoll R. A., Malenka R. C., Kauer J. A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev. 1990 Apr;70(2):513–565. doi: 10.1152/physrev.1990.70.2.513. [DOI] [PubMed] [Google Scholar]
  53. Ogren M. P., Hendrickson A. E. The morphology and distribution of striate cortex terminals in the inferior and lateral subdivisions of the Macaca monkey pulvinar. J Comp Neurol. 1979 Nov 1;188(1):179–199. doi: 10.1002/cne.901880113. [DOI] [PubMed] [Google Scholar]
  54. Ohzawa I., Sclar G., Freeman R. D. Contrast gain control in the cat visual cortex. Nature. 1982 Jul 15;298(5871):266–268. doi: 10.1038/298266a0. [DOI] [PubMed] [Google Scholar]
  55. Ojima H. Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex. 1994 Nov-Dec;4(6):646–663. doi: 10.1093/cercor/4.6.646. [DOI] [PubMed] [Google Scholar]
  56. Partlow G. D., Colonnier M., Szabo J. Thalamic projections of the superior colliculus in the rhesus monkey, Macaca mulatta. A light and electron microscopic study. J Comp Neurol. 1977 Feb 1;72(3):285–318. doi: 10.1002/cne.901710302. [DOI] [PubMed] [Google Scholar]
  57. Patel N. C., Bickford M. E. Synaptic targets of cholinergic terminals in the pulvinar nucleus of the cat. J Comp Neurol. 1997 Oct 20;387(2):266–278. [PubMed] [Google Scholar]
  58. Pin J. P., Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995 Jan;34(1):1–26. doi: 10.1016/0028-3908(94)00129-g. [DOI] [PubMed] [Google Scholar]
  59. Przybyszewski A. W., Gaska J. P., Foote W., Pollen D. A. Striate cortex increases contrast gain of macaque LGN neurons. Vis Neurosci. 2000 Jul-Aug;17(4):485–494. doi: 10.1017/s0952523800174012. [DOI] [PubMed] [Google Scholar]
  60. Ramcharan E. J., Gnadt J. W., Sherman S. M. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci. 2000 Jan-Feb;17(1):55–62. doi: 10.1017/s0952523800171056. [DOI] [PubMed] [Google Scholar]
  61. Reid R. C., Alonso J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature. 1995 Nov 16;378(6554):281–284. doi: 10.1038/378281a0. [DOI] [PubMed] [Google Scholar]
  62. Reid R. C., Alonso J. M. The processing and encoding of information in the visual cortex. Curr Opin Neurobiol. 1996 Aug;6(4):475–480. doi: 10.1016/s0959-4388(96)80052-3. [DOI] [PubMed] [Google Scholar]
  63. Robertson R. T., Cunningham T. J. Organization of corticothalamic projections from parietal cortex in cat. J Comp Neurol. 1981 Jul 10;199(4):569–585. doi: 10.1002/cne.901990409. [DOI] [PubMed] [Google Scholar]
  64. Robson J. A., Hall W. C. The organization of the pulvinar in the grey squirrel (Sciurus carolinensis). II. Synaptic organization and comparisons with the dorsal lateral geniculate nucleus. J Comp Neurol. 1977 May 15;173(2):389–416. doi: 10.1002/cne.901730211. [DOI] [PubMed] [Google Scholar]
  65. Rockland K. S., Andresen J., Cowie R. J., Robinson D. L. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J Comp Neurol. 1999 Apr 5;406(2):221–250. doi: 10.1002/(sici)1096-9861(19990405)406:2<221::aid-cne7>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  66. Rockland K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J Comp Neurol. 1998 Jan 26;390(4):515–536. doi: 10.1002/(sici)1096-9861(19980126)390:4<515::aid-cne5>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  67. Rodman H. R., Gross C. G., Albright T. D. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J Neurosci. 1989 Jun;9(6):2033–2050. doi: 10.1523/JNEUROSCI.09-06-02033.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Rodman H. R., Gross C. G., Albright T. D. Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J Neurosci. 1990 Apr;10(4):1154–1164. doi: 10.1523/JNEUROSCI.10-04-01154.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Rouiller E. M., Welker E. A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull. 2000 Dec;53(6):727–741. doi: 10.1016/s0361-9230(00)00364-6. [DOI] [PubMed] [Google Scholar]
  70. Récasens M., Vignes M. Excitatory amino acid metabotropic receptor subtypes and calcium regulation. Ann N Y Acad Sci. 1995 May 10;757:418–429. doi: 10.1111/j.1749-6632.1995.tb17501.x. [DOI] [PubMed] [Google Scholar]
  71. Sanderson K. J. Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp Brain Res. 1971;13(2):159–177. doi: 10.1007/BF00234084. [DOI] [PubMed] [Google Scholar]
  72. Sherman S. M. Dual response modes in lateral geniculate neurons: mechanisms and functions. Vis Neurosci. 1996 Mar-Apr;13(2):205–213. doi: 10.1017/s0952523800007446. [DOI] [PubMed] [Google Scholar]
  73. Sherman S. M., Guillery R. W. Functional organization of thalamocortical relays. J Neurophysiol. 1996 Sep;76(3):1367–1395. doi: 10.1152/jn.1996.76.3.1367. [DOI] [PubMed] [Google Scholar]
  74. Sherman S. M., Guillery R. W. On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7121–7126. doi: 10.1073/pnas.95.12.7121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Sherman S. M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001 Feb;24(2):122–126. doi: 10.1016/s0166-2236(00)01714-8. [DOI] [PubMed] [Google Scholar]
  76. Shipp S. Corticopulvinar connections of areas V5, V4, and V3 in the macaque monkey: a dual model of retinal and cortical topographies. J Comp Neurol. 2001 Oct 29;439(4):469–490. doi: 10.1002/cne.1363. [DOI] [PubMed] [Google Scholar]
  77. Smith G. D., Cox C. L., Sherman S. M., Rinzel J. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol. 2000 Jan;83(1):588–610. doi: 10.1152/jn.2000.83.1.588. [DOI] [PubMed] [Google Scholar]
  78. Somogyi G., Hajdu F., Tömböl T. Ultrastructure of the anterior ventral and anterior medial nuclei of the cat thalamus. Exp Brain Res. 1978 Mar 15;31(3):417–431. doi: 10.1007/BF00237299. [DOI] [PubMed] [Google Scholar]
  79. Swadlow H. A., Gusev A. G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat Neurosci. 2001 Apr;4(4):402–408. doi: 10.1038/86054. [DOI] [PubMed] [Google Scholar]
  80. Swadlow Harvey A., Gusev Alexander G., Bezdudnaya Tatiana. Activation of a cortical column by a thalamocortical impulse. J Neurosci. 2002 Sep 1;22(17):7766–7773. doi: 10.1523/JNEUROSCI.22-17-07766.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Symonds L. L., Rosenquist A. C., Edwards S. B., Palmer L. A. Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience. 1981;6(10):1995–2020. doi: 10.1016/0306-4522(81)90039-7. [DOI] [PubMed] [Google Scholar]
  82. Thejomayen D. M., Matsubara J. A. Confocal microscopic study of the dendritic organization of patchy, intrinsic neurons in area 18 of the cat. Cereb Cortex. 1993 Sep-Oct;3(5):442–453. doi: 10.1093/cercor/3.5.442. [DOI] [PubMed] [Google Scholar]
  83. Truchard A. M., Ohzawa I., Freeman R. D. Contrast gain control in the visual cortex: monocular versus binocular mechanisms. J Neurosci. 2000 Apr 15;20(8):3017–3032. doi: 10.1523/JNEUROSCI.20-08-03017.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Updyke B. V. A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups. J Comp Neurol. 1983 Sep 10;219(2):143–181. doi: 10.1002/cne.902190204. [DOI] [PubMed] [Google Scholar]
  85. Van Essen D. C., Anderson C. H., Felleman D. J. Information processing in the primate visual system: an integrated systems perspective. Science. 1992 Jan 24;255(5043):419–423. doi: 10.1126/science.1734518. [DOI] [PubMed] [Google Scholar]
  86. Van Horn S. C., Erişir A., Sherman S. M. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol. 2000 Jan 24;416(4):509–520. [PubMed] [Google Scholar]
  87. Wilson J. R., Friedlander M. J., Sherman S. M. Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus. Proc R Soc Lond B Biol Sci. 1984 Jun 22;221(1225):411–436. doi: 10.1098/rspb.1984.0042. [DOI] [PubMed] [Google Scholar]
  88. Zhan X. J., Cox C. L., Rinzel J., Sherman S. M. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. J Neurophysiol. 1999 May;81(5):2360–2373. doi: 10.1152/jn.1999.81.5.2360. [DOI] [PubMed] [Google Scholar]
  89. Zhou Q., Godwin D. W., O'Malley D. M., Adams P. R. Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol. 1997 May;77(5):2816–2825. doi: 10.1152/jn.1997.77.5.2816. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES