Abstract
Sensory deprivation and injury to the peripheral nervous system both induce plasticity in the somatosensory system of adult animals, but in different places. While injury induces plasticity at several locations within the ascending somatosensory pathways, sensory deprivation appears only to affect the somatosensory cortex. Experiments have been performed to detect experience-dependent plasticity in thalamic receptive fields, thalamic domain sizes and convergence of thalamic receptive fields onto cortical cells. So far, plasticity has not been detected with sensory deprivation paradigms that cause substantial cortical plasticity. Part of the reason for the lack of thalamic plasticity may lie in the synaptic properties of afferent systems to the thalamus. A second factor may lie in the differences in the organization of cortical and thalamic circuits. Many deprivation paradigms induce plasticity by decreasing phasic lateral inhibition. Since lateral inhibition appears to be far weaker in the thalamus than the cortex, sensory deprivation may not cause large enough imbalances in thalamic activity to induce plasticity in the thalamus.
Full Text
The Full Text of this article is available as a PDF (214.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonini A., Stryker M. P. Rapid remodeling of axonal arbors in the visual cortex. Science. 1993 Jun 18;260(5115):1819–1821. doi: 10.1126/science.8511592. [DOI] [PubMed] [Google Scholar]
- Armstrong-James M., Callahan C. A. Thalamo-cortical processing of vibrissal information in the rat. II. spatiotemporal convergence in the thalamic ventroposterior medial nucleus (VPm) and its relevance to generation of receptive fields of S1 cortical "barrel" neurones. J Comp Neurol. 1991 Jan 8;303(2):211–224. doi: 10.1002/cne.903030204. [DOI] [PubMed] [Google Scholar]
- Barth A. L., McKenna M., Glazewski S., Hill P., Impey S., Storm D., Fox K. Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J Neurosci. 2000 Jun 1;20(11):4206–4216. doi: 10.1523/JNEUROSCI.20-11-04206.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
- Carvell G. E., Simons D. J. Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci. 1990 Aug;10(8):2638–2648. doi: 10.1523/JNEUROSCI.10-08-02638.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark S. A., Allard T., Jenkins W. M., Merzenich M. M. Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature. 1988 Mar 31;332(6163):444–445. doi: 10.1038/332444a0. [DOI] [PubMed] [Google Scholar]
- Desîlets-Roy Barthélémy, Varga Caroline, Lavallée Philippe, Deschênes Martin. Substrate for cross-talk inhibition between thalamic barreloids. J Neurosci. 2002 Apr 24;22(9):RC218–RC218. doi: 10.1523/JNEUROSCI.22-09-j0002.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron. 2000 Jul;27(1):45–56. doi: 10.1016/s0896-6273(00)00008-8. [DOI] [PubMed] [Google Scholar]
- Fox K. The cortical component of experience-dependent synaptic plasticity in the rat barrel cortex. J Neurosci. 1994 Dec;14(12):7665–7679. doi: 10.1523/JNEUROSCI.14-12-07665.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frégnac Y., Shulz D. E. Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. J Neurobiol. 1999 Oct;41(1):69–82. [PubMed] [Google Scholar]
- Glazewski S., Fox K. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats. J Neurophysiol. 1996 Apr;75(4):1714–1729. doi: 10.1152/jn.1996.75.4.1714. [DOI] [PubMed] [Google Scholar]
- Glazewski S., Herman C., McKenna M., Chapman P. F., Fox K. Long-term potentiation in vivo in layers II/III of rat barrel cortex. Neuropharmacology. 1998 Apr-May;37(4-5):581–592. doi: 10.1016/s0028-3908(98)00039-2. [DOI] [PubMed] [Google Scholar]
- Glazewski S., McKenna M., Jacquin M., Fox K. Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex. Eur J Neurosci. 1998 Jun;10(6):2107–2116. doi: 10.1046/j.1460-9568.1998.00222.x. [DOI] [PubMed] [Google Scholar]
- Jones E. G., Pons T. P. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science. 1998 Nov 6;282(5391):1121–1125. doi: 10.1126/science.282.5391.1121. [DOI] [PubMed] [Google Scholar]
- Kaas J. H., Merzenich M. M., Killackey H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–356. doi: 10.1146/annurev.ne.06.030183.001545. [DOI] [PubMed] [Google Scholar]
- Kelly M. K., Carvell G. E., Kodger J. M., Simons D. J. Sensory loss by selected whisker removal produces immediate disinhibition in the somatosensory cortex of behaving rats. J Neurosci. 1999 Oct 15;19(20):9117–9125. doi: 10.1523/JNEUROSCI.19-20-09117.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kossut M., Głazewski S., Siucińska E., Skangiel-Kramska J. Functional plasticity and neurotransmitter receptor binding in the vibrissal barrel cortex. Acta Neurobiol Exp (Wars) 1993;53(1):161–173. [PubMed] [Google Scholar]
- Krupa D. J., Ghazanfar A. A., Nicolelis M. A. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8200–8205. doi: 10.1073/pnas.96.14.8200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeVay S., Stryker M. P., Shatz C. J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J Comp Neurol. 1978 May 1;179(1):223–244. doi: 10.1002/cne.901790113. [DOI] [PubMed] [Google Scholar]
- LeVay S., Wiesel T. N., Hubel D. H. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 1980 May 1;191(1):1–51. doi: 10.1002/cne.901910102. [DOI] [PubMed] [Google Scholar]
- Li X., Glazewski S., Lin X., Elde R., Fox K. Effect of vibrissae deprivation on follicle innervation, neuropeptide synthesis in the trigeminal ganglion, and S1 barrel cortex plasticity. J Comp Neurol. 1995 Jul 3;357(3):465–481. doi: 10.1002/cne.903570310. [DOI] [PubMed] [Google Scholar]
- Nicolelis M. A., Lin R. C., Woodward D. J., Chapin J. K. Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature. 1993 Feb 11;361(6412):533–536. doi: 10.1038/361533a0. [DOI] [PubMed] [Google Scholar]
- Olson C. R., Freeman R. D. Profile of the sensitive period for monocular deprivation in kittens. Exp Brain Res. 1980;39(1):17–21. doi: 10.1007/BF00237065. [DOI] [PubMed] [Google Scholar]
- Sengpiel F., Stawinski P., Bonhoeffer T. Influence of experience on orientation maps in cat visual cortex. Nat Neurosci. 1999 Aug;2(8):727–732. doi: 10.1038/11192. [DOI] [PubMed] [Google Scholar]
- Shosaku A. Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus. J Neurophysiol. 1986 May;55(5):1030–1043. doi: 10.1152/jn.1986.55.5.1030. [DOI] [PubMed] [Google Scholar]
- Van der Loos H., Woolsey T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science. 1973 Jan 26;179(4071):395–398. doi: 10.1126/science.179.4071.395. [DOI] [PubMed] [Google Scholar]
- Wallace H., Fox K. The effect of vibrissa deprivation pattern on the form of plasticity induced in rat barrel cortex. Somatosens Mot Res. 1999;16(2):122–138. doi: 10.1080/08990229970564. [DOI] [PubMed] [Google Scholar]
- Wallace H., Glazewski S., Liming K., Fox K. The role of cortical activity in experience-dependent potentiation and depression of sensory responses in rat barrel cortex. J Neurosci. 2001 Jun 1;21(11):3881–3894. doi: 10.1523/JNEUROSCI.21-11-03881.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang X., Merzenich M. M., Sameshima K., Jenkins W. M. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature. 1995 Nov 2;378(6552):71–75. doi: 10.1038/378071a0. [DOI] [PubMed] [Google Scholar]
- Wang Yun, Gupta Anirudh, Toledo-Rodriguez Maria, Wu Cai Zhi, Markram Henry. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002 Apr;12(4):395–410. doi: 10.1093/cercor/12.4.395. [DOI] [PubMed] [Google Scholar]
- Wiesel T. N., Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965 Nov;28(6):1029–1040. doi: 10.1152/jn.1965.28.6.1029. [DOI] [PubMed] [Google Scholar]
- Woolsey T. A., Wann J. R. Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. J Comp Neurol. 1976 Nov 1;170(1):53–66. doi: 10.1002/cne.901700105. [DOI] [PubMed] [Google Scholar]