Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Dec 29;357(1428):1809–1821. doi: 10.1098/rstb.2002.1171

The thalamus as a monitor of motor outputs.

R W Guillery 1, S M Sherman 1
PMCID: PMC1693090  PMID: 12626014

Abstract

Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.

Full Text

The Full Text of this article is available as a PDF (153.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson B. P., Chalupa L. M. The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat's lateral posterior nucleus. Neuroscience. 1985 May;15(1):81–95. doi: 10.1016/0306-4522(85)90125-3. [DOI] [PubMed] [Google Scholar]
  2. Ahmed B., Anderson J. C., Douglas R. J., Martin K. A., Nelson J. C. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol. 1994 Mar 1;341(1):39–49. doi: 10.1002/cne.903410105. [DOI] [PubMed] [Google Scholar]
  3. Bassett J. P., Taube J. S. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus. J Neurosci. 2001 Aug 1;21(15):5740–5751. doi: 10.1523/JNEUROSCI.21-15-05740.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berkley K. J., Blomqvist A., Pelt A., Flink R. Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: an anatomical study using two different double-labeling techniques. Brain Res. 1980 Dec 8;202(2):273–290. doi: 10.1016/0006-8993(80)90141-9. [DOI] [PubMed] [Google Scholar]
  5. Berkley K. J. Different targets of different neurons in nucleus gracilis of the cat. J Comp Neurol. 1975 Oct 1;163(3):285–303. doi: 10.1002/cne.901630304. [DOI] [PubMed] [Google Scholar]
  6. Berkley K. J. Spatial relationships between the terminations of somatic sensory motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon. J Comp Neurol. 1983 Oct 20;220(2):229–251. doi: 10.1002/cne.902200210. [DOI] [PubMed] [Google Scholar]
  7. Bourassa J., Deschênes M. Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience. 1995 May;66(2):253–263. doi: 10.1016/0306-4522(95)00009-8. [DOI] [PubMed] [Google Scholar]
  8. Bourassa J., Pinault D., Deschênes M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci. 1995 Jan 1;7(1):19–30. doi: 10.1111/j.1460-9568.1995.tb01016.x. [DOI] [PubMed] [Google Scholar]
  9. Brown A. G., Fyffe R. E. Direct observations on the contacts made between Ia afferent fibres and alpha-motoneurones in the cat's lumbosacral spinal cord. J Physiol. 1981;313:121–140. doi: 10.1113/jphysiol.1981.sp013654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown A. G., Rose P. K., Snow P. J. The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat. J Physiol. 1977 Nov;272(3):779–797. doi: 10.1113/jphysiol.1977.sp012073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bull M. S., Berkley K. J. Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. Somatosens Res. 1984;1(3):281–300. doi: 10.3109/07367228409144551. [DOI] [PubMed] [Google Scholar]
  12. Bunt A. H., Hendrickson A. E., Lund J. S., Lund R. D., Fuchs A. F. Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J Comp Neurol. 1975 Dec 1;164(3):265–285. doi: 10.1002/cne.901640302. [DOI] [PubMed] [Google Scholar]
  13. COWAN W. M., POWELL T. P. An experimental study of the relation between the medial mamillary nucleus and the cingulate cortex. Proc R Soc Lond B Biol Sci. 1954 Dec 15;143(910):114–125. doi: 10.1098/rspb.1954.0057. [DOI] [PubMed] [Google Scholar]
  14. Callahan E. C., Tong L., Spear P. D. Critical period for the marked loss of retinal X-cells following visual cortex damage in cats. Brain Res. 1984 Dec 10;323(2):302–306. doi: 10.1016/0006-8993(84)90302-0. [DOI] [PubMed] [Google Scholar]
  15. Casanova C. Response properties of neurons in area 17 projecting to the striate-recipient zone of the cat's lateralis posterior-pulvinar complex: comparison with cortico-tectal cells. Exp Brain Res. 1993;96(2):247–259. doi: 10.1007/BF00227105. [DOI] [PubMed] [Google Scholar]
  16. Chalupa L. M., Thompson I. Retinal ganglion cell projections to the superior colliculus of the hamster demonstrated by the horseradish peroxidase technique. Neurosci Lett. 1980 Aug;19(1):13–19. doi: 10.1016/0304-3940(80)90248-7. [DOI] [PubMed] [Google Scholar]
  17. Craig A. D., Jr, Burton H. The lateral cervical nucleus in the cat: anatomic organization of cervicothalamic neurons. J Comp Neurol. 1979 May 15;185(2):329–346. doi: 10.1002/cne.901850207. [DOI] [PubMed] [Google Scholar]
  18. Cruce J. A. An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol. 1977 Dec 15;176(4):631–644. doi: 10.1002/cne.901760411. [DOI] [PubMed] [Google Scholar]
  19. Deschênes M., Bourassa J., Pinault D. Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 1994 Nov 21;664(1-2):215–219. doi: 10.1016/0006-8993(94)91974-7. [DOI] [PubMed] [Google Scholar]
  20. Djouhri L., Brown A. G., Short A. D. Differential ascending projections from neurons in the cat's lateral cervical nucleus. Exp Brain Res. 1994;101(3):375–384. doi: 10.1007/BF00227331. [DOI] [PubMed] [Google Scholar]
  21. Djouhri L., Meng Z., Brown A. G., Short A. D. Electrophysiological evidence that spinomesencephalic neurons in the cat may be excited via spinocervical tract collaterals. Exp Brain Res. 1997 Oct;116(3):477–484. doi: 10.1007/pl00005775. [DOI] [PubMed] [Google Scholar]
  22. Dreher B., Sefton A. J., Ni S. Y., Nisbett G. The morphology, number, distribution and central projections of Class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol. 1985;26(1):10–48. doi: 10.1159/000118764. [DOI] [PubMed] [Google Scholar]
  23. Feldman S. G., Kruger L. An axonal transport study of the ascending projection of medial lemniscal neurons in the rat. J Comp Neurol. 1980 Aug 1;192(3):427–454. doi: 10.1002/cne.901920305. [DOI] [PubMed] [Google Scholar]
  24. Fukuda Y., Stone J. Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. J Neurophysiol. 1974 Jul;37(4):749–772. doi: 10.1152/jn.1974.37.4.749. [DOI] [PubMed] [Google Scholar]
  25. GUILLERY R. W. Degeneration in the hypothalamic connexions of the albino rat. J Anat. 1957 Jan;91(1):91–115. [PMC free article] [PubMed] [Google Scholar]
  26. Galletti C., Gamberini M., Kutz D. F., Fattori P., Luppino G., Matelli M. The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci. 2001 Apr;13(8):1572–1588. doi: 10.1046/j.0953-816x.2001.01538.x. [DOI] [PubMed] [Google Scholar]
  27. Giesler G. J., Jr, Björkeland M., Xu Q., Grant G. Organization of the spinocervicothalamic pathway in the rat. J Comp Neurol. 1988 Feb 8;268(2):223–233. doi: 10.1002/cne.902680207. [DOI] [PubMed] [Google Scholar]
  28. Goldstein S. S., Rall W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys J. 1974 Oct;14(10):731–757. doi: 10.1016/S0006-3495(74)85947-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Graybiel Ann M., Saka Esen. A genetic basis for obsessive grooming. Neuron. 2002 Jan 3;33(1):1–2. doi: 10.1016/s0896-6273(01)00575-x. [DOI] [PubMed] [Google Scholar]
  30. Guillery R. W., Feig S. L., Van Lieshout D. P. Connections of higher order visual relays in the thalamus: a study of corticothalamic pathways in cats. J Comp Neurol. 2001 Sep 10;438(1):66–85. doi: 10.1002/cne.1302. [DOI] [PubMed] [Google Scholar]
  31. Harding B. N. An ultrastructural study of the termination of afferent fibres within the ventrolateral and centre median nuclei of the monkey thalamus. Brain Res. 1973 May 17;54:341–346. doi: 10.1016/0006-8993(73)90058-9. [DOI] [PubMed] [Google Scholar]
  32. Henkel C. K. Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res. 1983 Jan 17;259(1):21–30. doi: 10.1016/0006-8993(83)91063-6. [DOI] [PubMed] [Google Scholar]
  33. Hess B. J., Blanks R. H., Lannou J., Precht W. Effects of kainic acid lesions of the nucleus reticularis tegmenti pontis on fast and slow phases of vestibulo-ocular and optokinetic reflexes in the pigmented rat. Exp Brain Res. 1989;74(1):63–79. doi: 10.1007/BF00248280. [DOI] [PubMed] [Google Scholar]
  34. Isu N., Sakuma A., Kitahara M., Ichikawa T., Watanabe S., Uchino Y. Extracellular recording of vestibulo-thalamic neurons projecting to the spinal cord in the cat. Neurosci Lett. 1989 Sep 25;104(1-2):25–30. doi: 10.1016/0304-3940(89)90323-6. [DOI] [PubMed] [Google Scholar]
  35. Jhaveri S., Edwards M. A., Schneider G. E. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth. Exp Brain Res. 1991;87(2):371–382. doi: 10.1007/BF00231854. [DOI] [PubMed] [Google Scholar]
  36. Johnson H., Cowey A. Transneuronal retrograde degeneration of retinal ganglion cells following restricted lesions of striate cortex in the monkey. Exp Brain Res. 2000 May;132(2):269–275. doi: 10.1007/s002210000384. [DOI] [PubMed] [Google Scholar]
  37. K Harting J., Van Lieshout D. P. Projections from the rostral pole of the inferior colliculus to the cat superior colliculus. Brain Res. 2000 Oct 27;881(2):244–247. doi: 10.1016/s0006-8993(00)02849-3. [DOI] [PubMed] [Google Scholar]
  38. Katter J. T., Dado R. J., Kostarczyk E., Giesler G. J., Jr Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon. J Neurophysiol. 1996 Jun;75(6):2581–2605. doi: 10.1152/jn.1996.75.6.2581. [DOI] [PubMed] [Google Scholar]
  39. Koontz M. A., Rodieck R. W., Farmer S. G. The retinal projection to the cat pretectum. J Comp Neurol. 1985 Jun 1;236(1):42–59. doi: 10.1002/cne.902360105. [DOI] [PubMed] [Google Scholar]
  40. Kultas-Ilinsky K., Ilinsky I. A. Fine structure of the ventral lateral nucleus (VL) of the Macaca mulatta thalamus: cell types and synaptology. J Comp Neurol. 1991 Dec 8;314(2):319–349. doi: 10.1002/cne.903140209. [DOI] [PubMed] [Google Scholar]
  41. Kuroda M., Price J. L. Ultrastructure and synaptic organization of axon terminals from brainstem structures to the mediodorsal thalamic nucleus of the rat. J Comp Neurol. 1991 Nov 15;313(3):539–552. doi: 10.1002/cne.903130313. [DOI] [PubMed] [Google Scholar]
  42. Latawiec D., Martin K. A., Meskenaite V. Termination of the geniculocortical projection in the striate cortex of macaque monkey: a quantitative immunoelectron microscopic study. J Comp Neurol. 2000 Apr 10;419(3):306–319. doi: 10.1002/(sici)1096-9861(20000410)419:3<306::aid-cne4>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  43. Leventhal A. G., Rodieck R. W., Dreher B. Central projections of cat retinal ganglion cells. J Comp Neurol. 1985 Jul 8;237(2):216–226. doi: 10.1002/cne.902370206. [DOI] [PubMed] [Google Scholar]
  44. Leventhal A. G., Rodieck R. W., Dreher B. Retinal ganglion cell classes in the Old World monkey: morphology and central projections. Science. 1981 Sep 4;213(4512):1139–1142. doi: 10.1126/science.7268423. [DOI] [PubMed] [Google Scholar]
  45. Li H., Mizuno N. Direct projections from nucleus X to the external cortex of the inferior colliculus in the rat. Brain Res. 1997 Nov 7;774(1-2):200–206. doi: 10.1016/s0006-8993(97)81704-0. [DOI] [PubMed] [Google Scholar]
  46. Linden R., Perry V. H. Massive retinotectal projection in rats. Brain Res. 1983 Aug 1;272(1):145–149. doi: 10.1016/0006-8993(83)90371-2. [DOI] [PubMed] [Google Scholar]
  47. Lu G. W., Willis W. D. Branching and/or collateral projections of spinal dorsal horn neurons. Brain Res Brain Res Rev. 1999 Jan;29(1):50–82. doi: 10.1016/s0165-0173(98)00048-4. [DOI] [PubMed] [Google Scholar]
  48. Luppino G., Calzavara R., Rozzi S., Matelli M. Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur J Neurosci. 2001 Sep;14(6):1035–1040. doi: 10.1046/j.0953-816x.2001.01734.x. [DOI] [PubMed] [Google Scholar]
  49. López D. E., Saldaña E., Nodal F. R., Merchán M. A., Warr W. B. Projections of cochlear root neurons, sentinels of the rat auditory pathway. J Comp Neurol. 1999 Dec 13;415(2):160–174. [PubMed] [Google Scholar]
  50. MATURANA H. R., LETTVIN J. Y., MCCULLOCH W. S., PITTS W. H. Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol. 1960 Jul;43(6):129–175. doi: 10.1085/jgp.43.6.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Matsuo S., Hosogai M., Nakao S. Ascending projections of posterior canal-activated excitatory and inhibitory secondary vestibular neurons to the mesodiencephalon in cats. Exp Brain Res. 1994;100(1):7–17. doi: 10.1007/BF00227274. [DOI] [PubMed] [Google Scholar]
  52. McCrea R. A., Bishop G. A., Kitai S. T. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978 Sep 15;181(2):397–419. doi: 10.1002/cne.901810210. [DOI] [PubMed] [Google Scholar]
  53. Muller R. U., Kubie J. L. The firing of hippocampal place cells predicts the future position of freely moving rats. J Neurosci. 1989 Dec;9(12):4101–4110. doi: 10.1523/JNEUROSCI.09-12-04101.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Nakamura H., Kuroda T., Wakita M., Kusunoki M., Kato A., Mikami A., Sakata H., Itoh K. From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci. 2001 Oct 15;21(20):8174–8187. doi: 10.1523/JNEUROSCI.21-20-08174.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Olshausen B. A., Anderson C. H., Van Essen D. C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci. 1993 Nov;13(11):4700–4719. doi: 10.1523/JNEUROSCI.13-11-04700.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Perry V. H., Cowey A. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience. 1984 Aug;12(4):1125–1137. doi: 10.1016/0306-4522(84)90007-1. [DOI] [PubMed] [Google Scholar]
  57. Rezak M., Benevento L. A. A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey. Brain Res. 1979 May 5;167(1):19–40. doi: 10.1016/0006-8993(79)90260-9. [DOI] [PubMed] [Google Scholar]
  58. Rinvik E., Grofová I. Cerebellar projections to the nuclei ventralis lateralis and ventralis anterior thalami. Experimental electron microscopical and light microscopical studies in the cat. Anat Embryol (Berl) 1974;146(1):95–111. doi: 10.1007/BF00341384. [DOI] [PubMed] [Google Scholar]
  59. Rinvik E., Grofová I. Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat Embryol (Berl) 1974;146(1):57–93. doi: 10.1007/BF00341383. [DOI] [PubMed] [Google Scholar]
  60. Rizzolatti G., Luppino G. The cortical motor system. Neuron. 2001 Sep 27;31(6):889–901. doi: 10.1016/s0896-6273(01)00423-8. [DOI] [PubMed] [Google Scholar]
  61. Rockland K. S. Convergence and branching patterns of round, type 2 corticopulvinar axons. J Comp Neurol. 1998 Jan 26;390(4):515–536. doi: 10.1002/(sici)1096-9861(19980126)390:4<515::aid-cne5>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  62. Romanski L. M., Tian B., Fritz J., Mishkin M., Goldman-Rakic P. S., Rauschecker J. P. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci. 1999 Dec;2(12):1131–1136. doi: 10.1038/16056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Schiller P. H., Malpeli J. G. Properties and tectal projections of monkey retinal ganglion cells. J Neurophysiol. 1977 Mar;40(2):428–445. doi: 10.1152/jn.1977.40.2.428. [DOI] [PubMed] [Google Scholar]
  64. Schwartz M. L., Dekker J. J., Goldman-Rakic P. S. Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey. J Comp Neurol. 1991 Jul 15;309(3):289–304. doi: 10.1002/cne.903090302. [DOI] [PubMed] [Google Scholar]
  65. Sherman S. M., Guillery R. W. On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7121–7126. doi: 10.1073/pnas.95.12.7121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Sherman S. Murray, Guillery R. W. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1695–1708. doi: 10.1098/rstb.2002.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Shinoda Y., Futami T., Mitoma H., Yokota J. Morphology of single neurones in the cerebello-rubrospinal system. Behav Brain Res. 1988 Apr-May;28(1-2):59–64. doi: 10.1016/0166-4328(88)90076-9. [DOI] [PubMed] [Google Scholar]
  68. Shore S. E., Moore J. K. Sources of input to the cochlear granule cell region in the guinea pig. Hear Res. 1998 Feb;116(1-2):33–42. doi: 10.1016/s0378-5955(97)00207-4. [DOI] [PubMed] [Google Scholar]
  69. Sommer Marc A., Wurtz Robert H. A pathway in primate brain for internal monitoring of movements. Science. 2002 May 24;296(5572):1480–1482. doi: 10.1126/science.1069590. [DOI] [PubMed] [Google Scholar]
  70. Somogyi G., Hajdu F., Tömböl T. Ultrastructure of the anterior ventral and anterior medial nuclei of the cat thalamus. Exp Brain Res. 1978 Mar 15;31(3):417–431. doi: 10.1007/BF00237299. [DOI] [PubMed] [Google Scholar]
  71. Stackman R. W., Taube J. S. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci. 1998 Nov 1;18(21):9020–9037. doi: 10.1523/JNEUROSCI.18-21-09020.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Standage G. P., Benevento L. A. The organization of connections between the pulvinar and visual area MT in the macaque monkey. Brain Res. 1983 Mar 7;262(2):288–294. doi: 10.1016/0006-8993(83)91020-x. [DOI] [PubMed] [Google Scholar]
  73. Stanton G. B. Organization of cerebellar and area "y" projections to the nucleus reticularis tegmenti pontis in macaque monkeys. J Comp Neurol. 2001 Apr 2;432(2):169–183. doi: 10.1002/cne.1095. [DOI] [PubMed] [Google Scholar]
  74. Stanton G. B. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol. 1980 Apr 15;190(4):699–731. doi: 10.1002/cne.901900406. [DOI] [PubMed] [Google Scholar]
  75. Sur M., Esguerra M., Garraghty P. E., Kritzer M. F., Sherman S. M. Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. J Neurophysiol. 1987 Jul;58(1):1–32. doi: 10.1152/jn.1987.58.1.1. [DOI] [PubMed] [Google Scholar]
  76. Tamamaki N., Uhlrich D. J., Sherman S. M. Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin. J Comp Neurol. 1995 Apr 17;354(4):583–607. doi: 10.1002/cne.903540408. [DOI] [PubMed] [Google Scholar]
  77. Taube J. S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci. 1995 Jan;15(1 Pt 1):70–86. doi: 10.1523/JNEUROSCI.15-01-00070.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Taube J. S. Some thoughts on place cells and the hippocampus. Hippocampus. 1999;9(4):452–457. doi: 10.1002/(SICI)1098-1063(1999)9:4<452::AID-HIPO11>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  79. Tolias A. S., Smirnakis S. M., Augath M. A., Trinath T., Logothetis N. K. Motion processing in the macaque: revisited with functional magnetic resonance imaging. J Neurosci. 2001 Nov 1;21(21):8594–8601. doi: 10.1523/JNEUROSCI.21-21-08594.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Tong L., Spear P. D., Kalil R. E., Callahan E. C. Loss of retinal X-cells in cats with neonatal or adult visual cortex damage. Science. 1982 Jul 2;217(4554):72–75. doi: 10.1126/science.7089543. [DOI] [PubMed] [Google Scholar]
  81. Torigoe Y., Blanks R. H., Precht W. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. J Comp Neurol. 1986 Jan 1;243(1):88–105. doi: 10.1002/cne.902430108. [DOI] [PubMed] [Google Scholar]
  82. Tsukahara N., Toyama K., Kosaka K. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp Brain Res. 1967;4(1):18–33. doi: 10.1007/BF00235214. [DOI] [PubMed] [Google Scholar]
  83. Van Essen D. C., Anderson C. H., Felleman D. J. Information processing in the primate visual system: an integrated systems perspective. Science. 1992 Jan 24;255(5043):419–423. doi: 10.1126/science.1734518. [DOI] [PubMed] [Google Scholar]
  84. Vaney D. I., Peichl L., Wässle H., Illing R. B. Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Res. 1981 May 18;212(2):447–453. doi: 10.1016/0006-8993(81)90476-5. [DOI] [PubMed] [Google Scholar]
  85. Veinante P., Jacquin M. F., Deschênes M. Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol. 2000 May 1;420(2):233–243. doi: 10.1002/(sici)1096-9861(20000501)420:2<233::aid-cne6>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  86. Veinante P., Lavallée P., Deschênes M. Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J Comp Neurol. 2000 Aug 21;424(2):197–204. doi: 10.1002/1096-9861(20000821)424:2<197::aid-cne1>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  87. Vetter D. E., Saldaña E., Mugnaini E. Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hear Res. 1993 Nov;70(2):173–186. doi: 10.1016/0378-5955(93)90156-u. [DOI] [PubMed] [Google Scholar]
  88. Whitley J. M., Henkel C. K. Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol. 1984 Oct 20;229(2):257–270. doi: 10.1002/cne.902290210. [DOI] [PubMed] [Google Scholar]
  89. Wässle H., Illing R. B. The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. J Comp Neurol. 1980 Mar 15;190(2):333–356. doi: 10.1002/cne.901900208. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES