Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2002 Dec 29;357(1428):1717–1727. doi: 10.1098/rstb.2002.1156

Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex.

Harvey A Swadlow 1
PMCID: PMC1693091  PMID: 12626006

Abstract

Intracortical inhibition plays a role in shaping sensory cortical receptive fields and is mediated by both feed-forward and feedback mechanisms. Feed-forward inhibition is the faster of the two processes, being generated by inhibitory interneurons driven by monosynaptic thalamocortical (TC) input. In principle, feed-forward inhibition can prevent targeted cortical neurons from ever reaching threshold when TC input is weak. To do so, however, inhibitory interneurons must respond to TC input at low thresholds and generate spikes very quickly. A powerful feed-forward inhibition would sharpen the tuning characteristics of targeted cortical neurons, and interneurons with sensitive and broadly tuned receptive fields could mediate this process. Suspected inhibitory interneurons (SINs) with precisely these properties are found in layer 4 of the somatosensory (S1) 'barrel' cortex of rodents and rabbits. These interneurons lack the directional selectivity seen in most cortical spiny neurons and in ventrobasal TC afferents, but are much more sensitive than cortical spiny neurons to low-amplitude whisker displacements. This paper is concerned with the activation of S1 SINs by TC impulses, and with the consequences of this activation. Multiple TC neurons and multiple S1 SINs were simultaneously studied in awake rabbits, and cross-correlation methods were used to examine functional connectivity. The results demonstrate a potent, temporally precise, dynamic and highly convergent/divergent functional input from ventrobasal TC neurons to SINs of the topographically aligned S1 barrel. Whereas the extensive pooling of convergent TC inputs onto SINs generates sensitive and broadly tuned inhibitory receptive fields, the potent TC divergence onto many SINs generates sharply synchronous activity among these elements. This TC feed-forward inhibitory network is well suited to provide a fast, potent, sensitive and broadly tuned inhibition of targeted spiny neurons that will suppress spike generation following all but the most optimal feed-forward excitatory inputs.

Full Text

The Full Text of this article is available as a PDF (295.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso J. M., Usrey W. M., Reid R. C. Precisely correlated firing in cells of the lateral geniculate nucleus. Nature. 1996 Oct 31;383(6603):815–819. doi: 10.1038/383815a0. [DOI] [PubMed] [Google Scholar]
  2. Alonso J. M., Usrey W. M., Reid R. C. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci. 2001 Jun 1;21(11):4002–4015. doi: 10.1523/JNEUROSCI.21-11-04002.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azouz R., Gray C. M., Nowak L. G., McCormick D. A. Physiological properties of inhibitory interneurons in cat striate cortex. Cereb Cortex. 1997 Sep;7(6):534–545. doi: 10.1093/cercor/7.6.534. [DOI] [PubMed] [Google Scholar]
  4. Castro-Alamancos Manuel A., Oldford Elizabeth. Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. J Physiol. 2002 May 15;541(Pt 1):319–331. doi: 10.1113/jphysiol.2002.016857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chung Sooyoung, Li Xiangrui, Nelson Sacha B. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron. 2002 Apr 25;34(3):437–446. doi: 10.1016/s0896-6273(02)00659-1. [DOI] [PubMed] [Google Scholar]
  6. Cope T. C., Fetz E. E., Matsumura M. Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J Physiol. 1987 Sep;390:161–188. doi: 10.1113/jphysiol.1987.sp016692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deans M. R., Gibson J. R., Sellitto C., Connors B. W., Paul D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron. 2001 Aug 16;31(3):477–485. doi: 10.1016/s0896-6273(01)00373-7. [DOI] [PubMed] [Google Scholar]
  8. Dykes R. W., Landry P., Metherate R., Hicks T. P. Functional role of GABA in cat primary somatosensory cortex: shaping receptive fields of cortical neurons. J Neurophysiol. 1984 Dec;52(6):1066–1093. doi: 10.1152/jn.1984.52.6.1066. [DOI] [PubMed] [Google Scholar]
  9. Eckhorn R., Thomas U. A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. J Neurosci Methods. 1993 Sep;49(3):175–179. doi: 10.1016/0165-0270(93)90121-7. [DOI] [PubMed] [Google Scholar]
  10. Freund T. F., Martin K. A., Somogyi P., Whitteridge D. Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. J Comp Neurol. 1985 Dec 8;242(2):275–291. doi: 10.1002/cne.902420209. [DOI] [PubMed] [Google Scholar]
  11. Galarreta M., Hestrin S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999 Nov 4;402(6757):72–75. doi: 10.1038/47029. [DOI] [PubMed] [Google Scholar]
  12. Gibson J. R., Beierlein M., Connors B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999 Nov 4;402(6757):75–79. doi: 10.1038/47035. [DOI] [PubMed] [Google Scholar]
  13. Gil Z., Connors B. W., Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron. 1997 Sep;19(3):679–686. doi: 10.1016/s0896-6273(00)80380-3. [DOI] [PubMed] [Google Scholar]
  14. Harris R. M., Woolsey T. A. Computer-assisted analyses of barrel neuron axons and their putative synaptic contacts. J Comp Neurol. 1983 Oct 10;220(1):63–79. doi: 10.1002/cne.902200107. [DOI] [PubMed] [Google Scholar]
  15. Jensen K. F., Killackey H. P. Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci. 1987 Nov;7(11):3529–3543. doi: 10.1523/JNEUROSCI.07-11-03529.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirkwood P. A., Sears T. A., Stagg D., Westgaard R. H. The spatial distribution of synchronization of intercostal motoneurones in the cat. J Physiol. 1982 Jun;327:137–155. doi: 10.1113/jphysiol.1982.sp014224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kirkwood P. A., Sears T. A. The effects of single afferent impulses on the probability of firing of external intercostal motoneurones in the cat. J Physiol. 1982 Jan;322:315–336. doi: 10.1113/jphysiol.1982.sp014039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levick W. R., Cleland B. G., Dubin M. W. Lateral geniculate neurons of cat: retinal inputs and physiology. Invest Ophthalmol. 1972 May;11(5):302–311. [PubMed] [Google Scholar]
  19. McCormick D. A., Connors B. W., Lighthall J. W., Prince D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol. 1985 Oct;54(4):782–806. doi: 10.1152/jn.1985.54.4.782. [DOI] [PubMed] [Google Scholar]
  20. Miller L. M., Escabí M. A., Read H. L., Schreiner C. E. Functional convergence of response properties in the auditory thalamocortical system. Neuron. 2001 Oct 11;32(1):151–160. doi: 10.1016/s0896-6273(01)00445-7. [DOI] [PubMed] [Google Scholar]
  21. Moore G. P., Segundo J. P., Perkel D. H., Levitan H. Statistical signs of synaptic interaction in neurons. Biophys J. 1970 Sep;10(9):876–900. doi: 10.1016/S0006-3495(70)86341-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nelson S., Toth L., Sheth B., Sur M. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science. 1994 Aug 5;265(5173):774–777. doi: 10.1126/science.8047882. [DOI] [PubMed] [Google Scholar]
  23. Pouille F., Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001 Aug 10;293(5532):1159–1163. doi: 10.1126/science.1060342. [DOI] [PubMed] [Google Scholar]
  24. Ramcharan E. J., Cox C. L., Zhan X. J., Sherman S. M., Gnadt J. W. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J Neurophysiol. 2000 Oct;84(4):1982–1987. doi: 10.1152/jn.2000.84.4.1982. [DOI] [PubMed] [Google Scholar]
  25. Reid R. C., Alonso J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature. 1995 Nov 16;378(6554):281–284. doi: 10.1038/378281a0. [DOI] [PubMed] [Google Scholar]
  26. Reitboeck H. J. Fiber microelectrodes for electrophysiological recordings. J Neurosci Methods. 1983 Jul;8(3):249–262. doi: 10.1016/0165-0270(83)90038-9. [DOI] [PubMed] [Google Scholar]
  27. Sears T. A., Stagg D. Short-term synchronization of intercostal motoneurone activity. J Physiol. 1976 Dec;263(3):357–381. doi: 10.1113/jphysiol.1976.sp011635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simons D. J., Carvell G. E. Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol. 1989 Feb;61(2):311–330. doi: 10.1152/jn.1989.61.2.311. [DOI] [PubMed] [Google Scholar]
  29. Simons D. J. Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol. 1978 May;41(3):798–820. doi: 10.1152/jn.1978.41.3.798. [DOI] [PubMed] [Google Scholar]
  30. Swadlow H. A., Beloozerova I. N., Sirota M. G. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J Neurophysiol. 1998 Feb;79(2):567–582. doi: 10.1152/jn.1998.79.2.567. [DOI] [PubMed] [Google Scholar]
  31. Swadlow H. A. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol. 1989 Jul;62(1):288–308. doi: 10.1152/jn.1989.62.1.288. [DOI] [PubMed] [Google Scholar]
  32. Swadlow H. A., Gusev A. G. Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci. 2002 May;5(5):403–404. doi: 10.1038/nn847. [DOI] [PubMed] [Google Scholar]
  33. Swadlow H. A., Gusev A. G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat Neurosci. 2001 Apr;4(4):402–408. doi: 10.1038/86054. [DOI] [PubMed] [Google Scholar]
  34. Swadlow H. A., Gusev A. G. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. J Neurophysiol. 2000 May;83(5):2802–2813. doi: 10.1152/jn.2000.83.5.2802. [DOI] [PubMed] [Google Scholar]
  35. Swadlow H. A. Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. J Neurophysiol. 1995 Apr;73(4):1584–1599. doi: 10.1152/jn.1995.73.4.1584. [DOI] [PubMed] [Google Scholar]
  36. Swadlow Harvey A., Gusev Alexander G., Bezdudnaya Tatiana. Activation of a cortical column by a thalamocortical impulse. J Neurosci. 2002 Sep 1;22(17):7766–7773. doi: 10.1523/JNEUROSCI.22-17-07766.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Troyer T. W., Krukowski A. E., Priebe N. J., Miller K. D. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J Neurosci. 1998 Aug 1;18(15):5908–5927. doi: 10.1523/JNEUROSCI.18-15-05908.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES