Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jan 29;358(1429):155–164. doi: 10.1098/rstb.2002.1187

Parasite plastids: maintenance and functions.

R J M Iain Wilson 1, K Rangachari 1, J W Saldanha 1, L Rickman 1, R S Buxton 1, J F Eccleston 1
PMCID: PMC1693094  PMID: 12594924

Abstract

Malaria and related parasites retain a vestigial, but biosynthetically active, plastid organelle acquired far back in evolution from a red algal cell. The organelle appears to be essential for parasite transmission from cell to cell and carries the smallest known plastid genome. Why has this genome been retained? The genes it carries seem to be dedicated to the expression of just two "housekeeping" genes. We speculate that one of these, called ycf24 in plants and sufB in bacteria, is tied to an essential "dark" reaction of the organelle--fatty acid biosynthesis. "Ball-park" clues to the function of bacterial suf genes have emerged only recently and point to the areas of iron homeostasis, [Fe-S] cluster formation and oxidative stress. We present experimental evidence for a physical interaction between SufB and its putative partner SufC (ycf16). In both malaria and plants, SufC is encoded in the nucleus and specifies an ATPase that is imported into the plastid.

Full Text

The Full Text of this article is available as a PDF (914.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 1993 Dec 21;165(4):609–631. doi: 10.1006/jtbi.1993.1210. [DOI] [PubMed] [Google Scholar]
  2. Allen J. F., Raven J. A. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996 May;42(5):482–492. doi: 10.1007/BF02352278. [DOI] [PubMed] [Google Scholar]
  3. Allen J. F. Redox control of transcription: sensors, response regulators, activators and repressors. FEBS Lett. 1993 Oct 18;332(3):203–207. doi: 10.1016/0014-5793(93)80631-4. [DOI] [PubMed] [Google Scholar]
  4. Ames G. F., Nikaido K., Wang I. X., Liu P. Q., Liu C. E., Hu C. Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J Bioenerg Biomembr. 2001 Apr;33(2):79–92. doi: 10.1023/a:1010797029183. [DOI] [PubMed] [Google Scholar]
  5. Basu M. K., Wilson H. J. Mercury risk from teeth. Nature. 1991 Jan 10;349(6305):109–109. doi: 10.1038/349109a0. [DOI] [PubMed] [Google Scholar]
  6. Cahoon E. B., Mills L. A., Shanklin J. Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. J Bacteriol. 1996 Feb;178(3):936–939. doi: 10.1128/jb.178.3.936-939.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Camps Manel, Arrizabalaga Gustavo, Boothroyd John. An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol Microbiol. 2002 Mar;43(5):1309–1318. doi: 10.1046/j.1365-2958.2002.02825.x. [DOI] [PubMed] [Google Scholar]
  8. Chauhan S., Titus D. E., O'Brian M. R. Metals control activity and expression of the heme biosynthesis enzyme delta-aminolevulinic acid dehydratase in Bradyrhizobium japonicum. J Bacteriol. 1997 Sep;179(17):5516–5520. doi: 10.1128/jb.179.17.5516-5520.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Douglas S. E., Penny S. L. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol. 1999 Feb;48(2):236–244. doi: 10.1007/pl00006462. [DOI] [PubMed] [Google Scholar]
  10. Ellis K. E., Clough B., Saldanha J. W., Wilson R. J. Nifs and Sufs in malaria. Mol Microbiol. 2001 Sep;41(5):973–981. doi: 10.1046/j.1365-2958.2001.02588.x. [DOI] [PubMed] [Google Scholar]
  11. Fast N. M., Kissinger J. C., Roos D. S., Keeling P. J. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol. 2001 Mar;18(3):418–426. doi: 10.1093/oxfordjournals.molbev.a003818. [DOI] [PubMed] [Google Scholar]
  12. Fichera M. E., Roos D. S. A plastid organelle as a drug target in apicomplexan parasites. Nature. 1997 Nov 27;390(6658):407–409. doi: 10.1038/37132. [DOI] [PubMed] [Google Scholar]
  13. Hidalgo E., Ding H., Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997 Jun;22(6):207–210. doi: 10.1016/s0968-0004(97)01068-2. [DOI] [PubMed] [Google Scholar]
  14. Hung L. W., Wang I. X., Nikaido K., Liu P. Q., Ames G. F., Kim S. H. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature. 1998 Dec 17;396(6712):703–707. doi: 10.1038/25393. [DOI] [PubMed] [Google Scholar]
  15. Jameson D. M., Eccleston J. F. Fluorescent nucleotide analogs: synthesis and applications. Methods Enzymol. 1997;278:363–390. doi: 10.1016/s0076-6879(97)78020-0. [DOI] [PubMed] [Google Scholar]
  16. Jomaa H., Wiesner J., Sanderbrand S., Altincicek B., Weidemeyer C., Hintz M., Türbachova I., Eberl M., Zeidler J., Lichtenthaler H. K. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999 Sep 3;285(5433):1573–1576. doi: 10.1126/science.285.5433.1573. [DOI] [PubMed] [Google Scholar]
  17. Kobe B., Kajava A. V. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem Sci. 2000 Oct;25(10):509–515. doi: 10.1016/s0968-0004(00)01667-4. [DOI] [PubMed] [Google Scholar]
  18. Kumar Abhinav, Nguyen Kiet T., Srivathsan Sumant, Ornstein Brad, Turley Stewart, Hirsh Irwin, Pei Dehua, Hol Wim G. J. Crystals of peptide deformylase from Plasmodium falciparum reveal critical characteristics of the active site for drug design. Structure. 2002 Mar;10(3):357–367. doi: 10.1016/s0969-2126(02)00719-0. [DOI] [PubMed] [Google Scholar]
  19. Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J., Palmer J. D., Roos D. S. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997 Mar 7;275(5305):1485–1489. doi: 10.1126/science.275.5305.1485. [DOI] [PubMed] [Google Scholar]
  20. Liu C. E., Liu P. Q., Wolf A., Lin E., Ames G. F. Both lobes of the soluble receptor of the periplasmic histidine permease, an ABC transporter (traffic ATPase), interact with the membrane-bound complex. Effect of different ligands and consequences for the mechanism of action. J Biol Chem. 1999 Jan 8;274(2):739–747. doi: 10.1074/jbc.274.2.739. [DOI] [PubMed] [Google Scholar]
  21. Locher Kaspar P., Lee Allen T., Rees Douglas C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002 May 10;296(5570):1091–1098. doi: 10.1126/science.1071142. [DOI] [PubMed] [Google Scholar]
  22. Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
  23. McFadden G. I., Waller R. F. Plastids in parasites of humans. Bioessays. 1997 Nov;19(11):1033–1040. doi: 10.1002/bies.950191114. [DOI] [PubMed] [Google Scholar]
  24. McLeod R., Muench S. P., Rafferty J. B., Kyle D. E., Mui E. J., Kirisits M. J., Mack D. G., Roberts C. W., Samuel B. U., Lyons R. E. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol. 2001 Feb;31(2):109–113. doi: 10.1016/s0020-7519(01)00111-4. [DOI] [PubMed] [Google Scholar]
  25. Meinnel T. Peptide deformylase of eukaryotic protists: a target for new antiparasitic agents? Parasitol Today. 2000 Apr;16(4):165–168. doi: 10.1016/s0169-4758(99)01627-0. [DOI] [PubMed] [Google Scholar]
  26. Møller S. G., Kunkel T., Chua N. H. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev. 2001 Jan 1;15(1):90–103. doi: 10.1101/gad.850101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nachin L., El Hassouni M., Loiseau L., Expert D., Barras F. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol. 2001 Feb;39(4):960–972. doi: 10.1046/j.1365-2958.2001.02288.x. [DOI] [PubMed] [Google Scholar]
  28. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999 May 27;399(6734):323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
  29. Nielsen E., Akita M., Davila-Aponte J., Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 1997 Mar 3;16(5):935–946. doi: 10.1093/emboj/16.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Palmer J. D. Organelle genomes: going, going, gone! Science. 1997 Feb 7;275(5301):790–791. doi: 10.1126/science.275.5301.790. [DOI] [PubMed] [Google Scholar]
  31. Patzer S. I., Hantke K. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J Bacteriol. 1999 May;181(10):3307–3309. doi: 10.1128/jb.181.10.3307-3309.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Race H. L., Herrmann R. G., Martin W. Why have organelles retained genomes? Trends Genet. 1999 Sep;15(9):364–370. doi: 10.1016/s0168-9525(99)01766-7. [DOI] [PubMed] [Google Scholar]
  33. Rangachari K., Davis C. T., Eccleston J. F., Hirst E. M. A., Saldanha J. W., Strath M., Wilson R. J. M. Iain. SufC hydrolyzes ATP and interacts with SufB from Thermotoga maritima. FEBS Lett. 2002 Mar 13;514(2-3):225–228. doi: 10.1016/s0014-5793(02)02369-4. [DOI] [PubMed] [Google Scholar]
  34. Rohdich F., Eisenreich W., Wungsintaweekul J., Hecht S., Schuhr C. A., Bacher A. Biosynthesis of terpenoids. 2C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum. Eur J Biochem. 2001 Jun;268(11):3190–3197. doi: 10.1046/j.1432-1327.2001.02204.x. [DOI] [PubMed] [Google Scholar]
  35. Roos D. S., Crawford M. J., Donald R. G., Kissinger J. C., Klimczak L. J., Striepen B. Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol. 1999 Aug;2(4):426–432. doi: 10.1016/S1369-5274(99)80075-7. [DOI] [PubMed] [Google Scholar]
  36. Rost B., Sander C., Schneider R. Redefining the goals of protein secondary structure prediction. J Mol Biol. 1994 Jan 7;235(1):13–26. doi: 10.1016/s0022-2836(05)80007-5. [DOI] [PubMed] [Google Scholar]
  37. Sato Shigeharu, Wilson R. J. M. The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. Curr Genet. 2002 Feb 6;40(6):391–398. doi: 10.1007/s00294-002-0273-3. [DOI] [PubMed] [Google Scholar]
  38. Sussman J. L., Lin D., Jiang J., Manning N. O., Prilusky J., Ritter O., Abola E. E. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 1):1078–1084. doi: 10.1107/s0907444998009378. [DOI] [PubMed] [Google Scholar]
  39. Vollmer M., Thomsen N., Wiek S., Seeber F. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem. 2000 Oct 30;276(8):5483–5490. doi: 10.1074/jbc.M009452200. [DOI] [PubMed] [Google Scholar]
  40. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wiesner J., Hintz M., Altincicek B., Sanderbrand S., Weidemeyer C., Beck E., Jomaa H. Plasmodium falciparum: detection of the deoxyxylulose 5-phosphate reductoisomerase activity. Exp Parasitol. 2000 Nov;96(3):182–186. doi: 10.1006/expr.2000.4566. [DOI] [PubMed] [Google Scholar]
  42. Williamson D. H., Gardner M. J., Preiser P., Moore D. J., Rangachari K., Wilson R. J. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet. 1994 Apr;243(2):249–252. doi: 10.1007/BF00280323. [DOI] [PubMed] [Google Scholar]
  43. Wilson R. J., Denny P. W., Preiser P. R., Rangachari K., Roberts K., Roy A., Whyte A., Strath M., Moore D. J., Moore P. W. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 1996 Aug 16;261(2):155–172. doi: 10.1006/jmbi.1996.0449. [DOI] [PubMed] [Google Scholar]
  44. Wilson R. J., Williamson D. H. Extrachromosomal DNA in the Apicomplexa. Microbiol Mol Biol Rev. 1997 Mar;61(1):1–16. doi: 10.1128/mmbr.61.1.1-16.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wilson R. J., Williamson D. H., Preiser P. Malaria and other Apicomplexans: the "plant" connection. Infect Agents Dis. 1994 Feb;3(1):29–37. [PubMed] [Google Scholar]
  46. Wimley William C. Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures. Protein Sci. 2002 Feb;11(2):301–312. doi: 10.1110/ps.29402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zheng M., Wang X., Templeton L. J., Smulski D. R., LaRossa R. A., Storz G. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol. 2001 Aug;183(15):4562–4570. doi: 10.1128/JB.183.15.4562-4570.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zuegge J., Ralph S., Schmuker M., McFadden G. I., Schneider G. Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene. 2001 Dec 12;280(1-2):19–26. doi: 10.1016/s0378-1119(01)00776-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES