Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jan 29;358(1429):19–38. doi: 10.1098/rstb.2002.1191

The function of genomes in bioenergetic organelles.

John F Allen 1
PMCID: PMC1693096  PMID: 12594916

Abstract

Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence.

Full Text

The Full Text of this article is available as a PDF (583.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams K. L., Daley D. O., Qiu Y. L., Whelan J., Palmer J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature. 2000 Nov 16;408(6810):354–357. doi: 10.1038/35042567. [DOI] [PubMed] [Google Scholar]
  2. Allen J. F., Allen C. A. A mitochondrial model for premature ageing of somatically cloned mammals. IUBMB Life. 1999 Oct;48(4):369–372. doi: 10.1080/713803544. [DOI] [PubMed] [Google Scholar]
  3. Allen J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 1993 Dec 21;165(4):609–631. doi: 10.1006/jtbi.1993.1210. [DOI] [PubMed] [Google Scholar]
  4. Allen J. F., Pfannschmidt T. Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1351–1359. doi: 10.1098/rstb.2000.0697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen J. F. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta. 1992 Jan 22;1098(3):275–335. doi: 10.1016/s0005-2728(09)91014-3. [DOI] [PubMed] [Google Scholar]
  6. Allen J. F., Raven J. A. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996 May;42(5):482–492. doi: 10.1007/BF02352278. [DOI] [PubMed] [Google Scholar]
  7. Allen J. F. Redox control of transcription: sensors, response regulators, activators and repressors. FEBS Lett. 1993 Oct 18;332(3):203–207. doi: 10.1016/0014-5793(93)80631-4. [DOI] [PubMed] [Google Scholar]
  8. Allen J. F. Separate sexes and the mitochondrial theory of ageing. J Theor Biol. 1996 May 21;180(2):135–140. doi: 10.1006/jtbi.1996.0089. [DOI] [PubMed] [Google Scholar]
  9. Allen John. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell. 2002 Aug 9;110(3):273–276. doi: 10.1016/s0092-8674(02)00870-x. [DOI] [PubMed] [Google Scholar]
  10. Archibald J. M., Cavalier-Smith T., Maier U., Douglas S. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph. J Mol Evol. 2001 Jun;52(6):490–501. doi: 10.1007/s002390010179. [DOI] [PubMed] [Google Scholar]
  11. Ashby M. K., Mullineaux C. W. Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II. FEMS Microbiol Lett. 1999 Dec 15;181(2):253–260. doi: 10.1111/j.1574-6968.1999.tb08852.x. [DOI] [PubMed] [Google Scholar]
  12. Ashby Mark K., Houmard Jean, Mullineaux Conrad W. The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolution. FEMS Microbiol Lett. 2002 Aug 27;214(1):25–30. doi: 10.1111/j.1574-6968.2002.tb11320.x. [DOI] [PubMed] [Google Scholar]
  13. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  14. Barbrook A. C., Symington H., Nisbet R. E., Larkum A., Howe C. J. Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum. Mol Genet Genomics. 2001 Oct 12;266(4):632–638. doi: 10.1007/s004380100582. [DOI] [PubMed] [Google Scholar]
  15. Bauer C. E., Elsen S., Bird T. H. Mechanisms for redox control of gene expression. Annu Rev Microbiol. 1999;53:495–523. doi: 10.1146/annurev.micro.53.1.495. [DOI] [PubMed] [Google Scholar]
  16. Bauer Carl, Elsen Sylvie, Swem Lee R., Swem Danielle L., Masuda Shinji. Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):147–154. doi: 10.1098/rstb.2002.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Berks B. C., Sargent F., De Leeuw E., Hinsley A. P., Stanley N. R., Jack R. L., Buchanan G., Palmer T. A novel protein transport system involved in the biogenesis of bacterial electron transfer chains. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):325–330. doi: 10.1016/s0005-2728(00)00168-7. [DOI] [PubMed] [Google Scholar]
  18. Berks B. C., Sargent F., Palmer T. The Tat protein export pathway. Mol Microbiol. 2000 Jan;35(2):260–274. doi: 10.1046/j.1365-2958.2000.01719.x. [DOI] [PubMed] [Google Scholar]
  19. Blackstone N. W. Redox control and the evolution of multicellularity. Bioessays. 2000 Oct;22(10):947–953. doi: 10.1002/1521-1878(200010)22:10<947::AID-BIES10>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  20. Blackstone N. W. Redox state, reactive oxygen species and adaptive growth in colonial hydroids. J Exp Biol. 2001 Jun;204(Pt 11):1845–1853. doi: 10.1242/jeb.204.11.1845. [DOI] [PubMed] [Google Scholar]
  21. Blackstone NW. Redox control in development and evolution: evidence from colonial hydroids. J Exp Biol. 1999 Dec;202(Pt 24):3541–3553. doi: 10.1242/jeb.202.24.3541. [DOI] [PubMed] [Google Scholar]
  22. Bogorad L. Evolution of organelles and eukaryotic genomes. Science. 1975 May 30;188(4191):891–898. doi: 10.1126/science.1138359. [DOI] [PubMed] [Google Scholar]
  23. Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol. 2002 Jan 22;12(2):R62–R64. doi: 10.1016/s0960-9822(01)00675-3. [DOI] [PubMed] [Google Scholar]
  24. Chow W. S., Melis A., Anderson J. M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7502–7506. doi: 10.1073/pnas.87.19.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Claros M. G., Perea J., Shu Y., Samatey F. A., Popot J. L., Jacq C. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem. 1995 Mar 15;228(3):762–771. [PubMed] [Google Scholar]
  26. Dalbey R. E., Robinson C. Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem Sci. 1999 Jan;24(1):17–22. doi: 10.1016/s0968-0004(98)01333-4. [DOI] [PubMed] [Google Scholar]
  27. Daley Daniel O., Adams Keith L., Clifton Rachel, Qualmann Svenja, Millar A. Harvey, Palmer Jeffrey D., Pratje Elke, Whelan James. Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J. 2002 Apr;30(1):11–21. doi: 10.1046/j.1365-313x.2002.01263.x. [DOI] [PubMed] [Google Scholar]
  28. Danon A., Mayfield S. P. Light-regulated translation of chloroplast messenger RNAs through redox potential. Science. 1994 Dec 9;266(5191):1717–1719. doi: 10.1126/science.7992056. [DOI] [PubMed] [Google Scholar]
  29. Delwiche CF. Tracing the Thread of Plastid Diversity through the Tapestry of Life. Am Nat. 1999 Oct;154(S4):S164–S177. doi: 10.1086/303291. [DOI] [PubMed] [Google Scholar]
  30. Doolittle W. F. Phylogenetic classification and the universal tree. Science. 1999 Jun 25;284(5423):2124–2129. doi: 10.1126/science.284.5423.2124. [DOI] [PubMed] [Google Scholar]
  31. Douglas S. E. Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev. 1998 Dec;8(6):655–661. doi: 10.1016/s0959-437x(98)80033-6. [DOI] [PubMed] [Google Scholar]
  32. Eberhard Stephan, Drapier Dominique, Wollman Francis-André. Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J. 2002 Jul;31(2):149–160. doi: 10.1046/j.1365-313x.2002.01340.x. [DOI] [PubMed] [Google Scholar]
  33. El Bissati K., Kirilovsky D. Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. Plant Physiol. 2001 Apr;125(4):1988–2000. doi: 10.1104/pp.125.4.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Embley T. M., Martin W. A hydrogen-producing mitochondrion. Nature. 1998 Dec 10;396(6711):517–519. doi: 10.1038/24994. [DOI] [PubMed] [Google Scholar]
  35. Ems S. C., Morden C. W., Dixon C. K., Wolfe K. H., dePamphilis C. W., Palmer J. D. Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol. 1995 Nov;29(4):721–733. doi: 10.1007/BF00041163. [DOI] [PubMed] [Google Scholar]
  36. Eraso J. M., Kaplan S. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry. 2000 Feb 29;39(8):2052–2062. doi: 10.1021/bi9923858. [DOI] [PubMed] [Google Scholar]
  37. Eraso Jesus M., Kaplan Samuel. Redox flow as an instrument of gene regulation. Methods Enzymol. 2002;348:216–229. doi: 10.1016/s0076-6879(02)48640-5. [DOI] [PubMed] [Google Scholar]
  38. Escobar Galvis M. L., Allen J. F., Hâkansson G. Protein synthesis by isolated pea mitochondria is dependent on the activity of respiratory complex II. Curr Genet. 1998 May;33(5):320–329. doi: 10.1007/s002940050343. [DOI] [PubMed] [Google Scholar]
  39. Ferea T. L., Botstein D., Brown P. O., Rosenzweig R. F. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9721–9726. doi: 10.1073/pnas.96.17.9721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Forsberg J., Rosenquist M., Fraysse L., Allen J. F. Redox signalling in chloroplasts and mitochondria: genomic and biochemical evidence for two-component regulatory systems in bioenergetic organelles. Biochem Soc Trans. 2001 Aug;29(Pt 4):403–407. doi: 10.1042/bst0290403. [DOI] [PubMed] [Google Scholar]
  41. Gabriel K., Buchanan S. K., Lithgow T. The alpha and the beta: protein translocation across mitochondrial and plastid outer membranes. Trends Biochem Sci. 2001 Jan;26(1):36–40. doi: 10.1016/s0968-0004(00)01684-4. [DOI] [PubMed] [Google Scholar]
  42. Gatenby A. A., Ellis R. J. Chaperone function: the assembly of ribulose bisphosphate carboxylase-oxygenase. Annu Rev Cell Biol. 1990;6:125–149. doi: 10.1146/annurev.cb.06.110190.001013. [DOI] [PubMed] [Google Scholar]
  43. Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
  44. Gray M. W., Doolittle W. F. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982 Mar;46(1):1–42. doi: 10.1128/mr.46.1.1-42.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gray M. W. Evolution of organellar genomes. Curr Opin Genet Dev. 1999 Dec;9(6):678–687. doi: 10.1016/s0959-437x(99)00030-1. [DOI] [PubMed] [Google Scholar]
  46. Gray M. W. Mitochondrial genes on the move. Nature. 2000 Nov 16;408(6810):302-3, 305. doi: 10.1038/35042663. [DOI] [PubMed] [Google Scholar]
  47. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  48. Grebe T. W., Stock J. B. The histidine protein kinase superfamily. Adv Microb Physiol. 1999;41:139–227. doi: 10.1016/s0065-2911(08)60167-8. [DOI] [PubMed] [Google Scholar]
  49. Hackstein J. H., Akhmanova A., Voncken F., van Hoek A., van Alen T., Boxma B., Moon-van der Staay S. Y., van der Staay G., Leunissen J., Huynen M. Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology (Jena) 2001;104(3-4):290–302. doi: 10.1078/0944-2006-00035. [DOI] [PubMed] [Google Scholar]
  50. Harrison M. A., Keen J. N., Findlay J. B., Allen J. F. Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. FEBS Lett. 1990 May 7;264(1):25–28. doi: 10.1016/0014-5793(90)80755-8. [DOI] [PubMed] [Google Scholar]
  51. Harvey Alexandra J., Kind Karen L., Thompson Jeremy G. REDOX regulation of early embryo development. Reproduction. 2002 Apr;123(4):479–486. doi: 10.1530/rep.0.1230479. [DOI] [PubMed] [Google Scholar]
  52. Heathcote Peter, Fyfe Paul K., Jones Michael R. Reaction centres: the structure and evolution of biological solar power. Trends Biochem Sci. 2002 Feb;27(2):79–87. doi: 10.1016/s0968-0004(01)02034-5. [DOI] [PubMed] [Google Scholar]
  53. Henze K., Martin W. How do mitochondrial genes get into the nucleus? Trends Genet. 2001 Jul;17(7):383–387. doi: 10.1016/s0168-9525(01)02312-5. [DOI] [PubMed] [Google Scholar]
  54. Howe C. J., Barbrook A. C., Lockhart P. J. Organelle genes--do they jump or are they pushed? Trends Genet. 2000 Feb;16(2):65–66. doi: 10.1016/s0168-9525(99)01919-8. [DOI] [PubMed] [Google Scholar]
  55. Iuchi S., Lin E. C. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol. 1992 Jun;174(12):3972–3980. doi: 10.1128/jb.174.12.3972-3980.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Jackson-Constan D., Akita M., Keegstra K. Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):102–113. doi: 10.1016/s0167-4889(01)00148-3. [DOI] [PubMed] [Google Scholar]
  57. Jarvis P., Soll J. Toc, Tic, and chloroplast protein import. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):64–79. doi: 10.1016/s0167-4889(01)00147-1. [DOI] [PubMed] [Google Scholar]
  58. Jordan P., Fromme P., Witt H. T., Klukas O., Saenger W., Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001 Jun 21;411(6840):909–917. doi: 10.1038/35082000. [DOI] [PubMed] [Google Scholar]
  59. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996 Jun 30;3(3):109–136. doi: 10.1093/dnares/3.3.109. [DOI] [PubMed] [Google Scholar]
  60. Kanevski I., Maliga P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1969–1973. doi: 10.1073/pnas.91.5.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kim J., Mayfield S. P. Protein disulfide isomerase as a regulator of chloroplast translational activation. Science. 1997 Dec 12;278(5345):1954–1957. doi: 10.1126/science.278.5345.1954. [DOI] [PubMed] [Google Scholar]
  62. Koehler C. M., Merchant S., Schatz G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem Sci. 1999 Nov;24(11):428–432. doi: 10.1016/s0968-0004(99)01462-0. [DOI] [PubMed] [Google Scholar]
  63. Konstantinov Y. M., Lutsenko G. N., Podsosonny V. A. Genetic functions of isolated maize mitochondria under model changes of redox conditions. Biochem Mol Biol Int. 1995 Jun;36(2):319–326. [PubMed] [Google Scholar]
  64. Korab-Laskowska M., Rioux P., Brossard N., Littlejohn T. G., Gray M. W., Lang B. F., Burger G. The Organelle Genome Database Project (GOBASE). Nucleic Acids Res. 1998 Jan 1;26(1):138–144. doi: 10.1093/nar/26.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kovács L., Wiessner W., Kis M., Nagy F., Mende D., Demeter S. Short- and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichiometry by acetate metabolism in the green alga, Chlamydobotrys stellata. Photosynth Res. 2000;65(3):231–247. doi: 10.1023/A:1010650532693. [DOI] [PubMed] [Google Scholar]
  66. Lang B. F., Gray M. W., Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet. 1999;33:351–397. doi: 10.1146/annurev.genet.33.1.351. [DOI] [PubMed] [Google Scholar]
  67. Leuenberger D., Bally N. A., Schatz G., Koehler C. M. Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J. 1999 Sep 1;18(17):4816–4822. doi: 10.1093/emboj/18.17.4816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Li H., Sherman L. A. A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol. 2000 Aug;182(15):4268–4277. doi: 10.1128/jb.182.15.4268-4277.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  70. Lonsdale D. M., Hodge T. P., Howe C. J., Stern D. B. Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell. 1983 Oct;34(3):1007–1014. doi: 10.1016/0092-8674(83)90558-5. [DOI] [PubMed] [Google Scholar]
  71. Mahler H. R., Raff R. A. The evolutionary origin of the mitochondrion: a nonsymbiotic model. Int Rev Cytol. 1975;43:1–124. doi: 10.1016/s0074-7696(08)60067-4. [DOI] [PubMed] [Google Scholar]
  72. Manfredi Giovanni, Fu Jin, Ojaimi Joseline, Sadlock James E., Kwong Jennifer Q., Guy John, Schon Eric A. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002 Feb 25;30(4):394–399. doi: 10.1038/ng851. [DOI] [PubMed] [Google Scholar]
  73. Marc Philippe, Margeot Antoine, Devaux Frederic, Blugeon Corinne, Corral-Debrinski Marisol, Jacq Claude. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 2002 Jan 29;3(2):159–164. doi: 10.1093/embo-reports/kvf025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Marienfeld J, Unseld M, Brennicke A. The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci. 1999 Dec;4(12):495–502. doi: 10.1016/s1360-1385(99)01502-2. [DOI] [PubMed] [Google Scholar]
  75. Martin W., Hoffmeister M., Rotte C., Henze K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2001 Nov;382(11):1521–1539. doi: 10.1515/BC.2001.187. [DOI] [PubMed] [Google Scholar]
  76. Martin W., Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998 Mar 5;392(6671):37–41. doi: 10.1038/32096. [DOI] [PubMed] [Google Scholar]
  77. Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
  78. Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and Why? . Plant Physiol. 1998 Sep;118(1):9–17. doi: 10.1104/pp.118.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Martin William, Russell Michael J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):59–85. doi: 10.1098/rstb.2002.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. McFadden G. I. Chloroplast origin and integration. Plant Physiol. 2001 Jan;125(1):50–53. doi: 10.1104/pp.125.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. McFadden G. I. Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol. 1999 Dec;2(6):513–519. doi: 10.1016/s1369-5266(99)00025-4. [DOI] [PubMed] [Google Scholar]
  82. Millen R. S., Olmstead R. G., Adams K. L., Palmer J. D., Lao N. T., Heggie L., Kavanagh T. A., Hibberd J. M., Gray J. C., Morden C. W. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell. 2001 Mar;13(3):645–658. doi: 10.1105/tpc.13.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Morse D., Salois P., Markovic P., Hastings J. W. A nuclear-encoded form II RuBisCO in dinoflagellates. Science. 1995 Jun 16;268(5217):1622–1624. doi: 10.1126/science.7777861. [DOI] [PubMed] [Google Scholar]
  84. Murakami A., Kim S. J., Fujita Y. Changes in photosystem stoichiometry in response to environmental conditions for cell growth observed with the cyanophyte Synechocystis PCC 6714. Plant Cell Physiol. 1997 Apr;38(4):392–397. doi: 10.1093/oxfordjournals.pcp.a029181. [DOI] [PubMed] [Google Scholar]
  85. Oh J. I., Kaplan S. Redox signaling: globalization of gene expression. EMBO J. 2000 Aug 15;19(16):4237–4247. doi: 10.1093/emboj/19.16.4237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Ozawa T. Mitochondrial DNA mutations associated with aging and degenerative diseases. Exp Gerontol. 1995 May-Aug;30(3-4):269–290. doi: 10.1016/0531-5565(94)00057-a. [DOI] [PubMed] [Google Scholar]
  87. doi: 10.1098/rspb.1999.0792. [DOI] [PMC free article] [Google Scholar]
  88. Palmer J. D. Organelle genomes: going, going, gone! Science. 1997 Feb 7;275(5301):790–791. doi: 10.1126/science.275.5301.790. [DOI] [PubMed] [Google Scholar]
  89. Pearson C. K., Wilson S. B., Schaffer R., Ross A. W. NAD turnover and utilisation of metabolites for RNA synthesis in a reaction sensing the redox state of the cytochrome b6f complex in isolated chloroplasts. Eur J Biochem. 1993 Dec 1;218(2):397–404. doi: 10.1111/j.1432-1033.1993.tb18389.x. [DOI] [PubMed] [Google Scholar]
  90. Pfanner N., Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol. 2001 May;2(5):339–349. doi: 10.1038/35073006. [DOI] [PubMed] [Google Scholar]
  91. Pfanner Nikolaus, Wiedemann Nils. Mitochondrial protein import: two membranes, three translocases. Curr Opin Cell Biol. 2002 Aug;14(4):400–411. doi: 10.1016/s0955-0674(02)00355-1. [DOI] [PubMed] [Google Scholar]
  92. Pfannschmidt T., Nilsson A., Tullberg A., Link G., Allen J. F. Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life. 1999 Sep;48(3):271–276. doi: 10.1080/713803507. [DOI] [PubMed] [Google Scholar]
  93. Popot J. L., de Vitry C. On the microassembly of integral membrane proteins. Annu Rev Biophys Biophys Chem. 1990;19:369–403. doi: 10.1146/annurev.bb.19.060190.002101. [DOI] [PubMed] [Google Scholar]
  94. Race H. L., Herrmann R. G., Martin W. Why have organelles retained genomes? Trends Genet. 1999 Sep;15(9):364–370. doi: 10.1016/s0168-9525(99)01766-7. [DOI] [PubMed] [Google Scholar]
  95. Robinson C., Bolhuis A. Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol. 2001 May;2(5):350–356. doi: 10.1038/35073038. [DOI] [PubMed] [Google Scholar]
  96. Robinson C. The twin-arginine translocation system: a novel means of transporting folded proteins in chloroplasts and bacteria. Biol Chem. 2000 Feb;381(2):89–93. doi: 10.1515/BC.2000.013. [DOI] [PubMed] [Google Scholar]
  97. Rodermel S. Pathways of plastid-to-nucleus signaling. Trends Plant Sci. 2001 Oct;6(10):471–478. doi: 10.1016/s1360-1385(01)02085-4. [DOI] [PubMed] [Google Scholar]
  98. Roger A. J., Svärd S. G., Tovar J., Clark C. G., Smith M. W., Gillin F. D., Sogin M. L. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):229–234. doi: 10.1073/pnas.95.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Roger AJ. Reconstructing Early Events in Eukaryotic Evolution. Am Nat. 1999 Oct;154(S4):S146–S163. doi: 10.1086/303290. [DOI] [PubMed] [Google Scholar]
  100. Rujan T., Martin W. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 2001 Mar;17(3):113–120. doi: 10.1016/s0168-9525(00)02209-5. [DOI] [PubMed] [Google Scholar]
  101. Saccone C., Gissi C., Lanave C., Larizza A., Pesole G., Reyes A. Evolution of the mitochondrial genetic system: an overview. Gene. 2000 Dec 30;261(1):153–159. doi: 10.1016/s0378-1119(00)00484-4. [DOI] [PubMed] [Google Scholar]
  102. Salzberg S. L., White O., Peterson J., Eisen J. A. Microbial genes in the human genome: lateral transfer or gene loss? Science. 2001 May 17;292(5523):1903–1906. doi: 10.1126/science.1061036. [DOI] [PubMed] [Google Scholar]
  103. Sargent Frank, Berks Ben C., Palmer Tracy. Assembly of membrane-bound respiratory complexes by the Tat protein-transport system. Arch Microbiol. 2002 May 22;178(2):77–84. doi: 10.1007/s00203-002-0434-2. [DOI] [PubMed] [Google Scholar]
  104. Schatz G. Protein transport. The doors to organelles. Nature. 1998 Oct 1;395(6701):439–440. doi: 10.1038/26620. [DOI] [PubMed] [Google Scholar]
  105. Schemidt R. A., Qu J., Williams J. R., Brusilow W. S. Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. J Bacteriol. 1998 Jun;180(12):3205–3208. doi: 10.1128/jb.180.12.3205-3208.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Selosse M. -A., Albert B., Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001 Mar 1;16(3):135–141. doi: 10.1016/s0169-5347(00)02084-x. [DOI] [PubMed] [Google Scholar]
  107. Stern D. B., Lonsdale D. M. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature. 1982 Oct 21;299(5885):698–702. doi: 10.1038/299698a0. [DOI] [PubMed] [Google Scholar]
  108. Stock D., Gibbons C., Arechaga I., Leslie A. G., Walker J. E. The rotary mechanism of ATP synthase. Curr Opin Struct Biol. 2000 Dec;10(6):672–679. doi: 10.1016/s0959-440x(00)00147-0. [DOI] [PubMed] [Google Scholar]
  109. Stoebe Bettina, Maier Uwe-G. One, two, three: nature's tool box for building plastids. Protoplasma. 2002 May;219(3-4):123–130. doi: 10.1007/s007090200013. [DOI] [PubMed] [Google Scholar]
  110. Stupar R. M., Lilly J. W., Town C. D., Cheng Z., Kaul S., Buell C. R., Jiang J. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5099–5103. doi: 10.1073/pnas.091110398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Surpin Marci, Larkin Robert M., Chory Joanne. Signal transduction between the chloroplast and the nucleus. Plant Cell. 2002;14 (Suppl):S327–S338. doi: 10.1105/tpc.010446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Tjaden J., Schwöppe C., Möhlmann T., Quick P. W., Neuhaus H. E. Expression of a plastidic ATP/ADP transporter gene in Escherichia coli leads to a functional adenine nucleotide transport system in the bacterial cytoplasmic membrane. J Biol Chem. 1998 Apr 17;273(16):9630–9636. doi: 10.1074/jbc.273.16.9630. [DOI] [PubMed] [Google Scholar]
  113. Tovar J., Fischer A., Clark C. G. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999 Jun;32(5):1013–1021. doi: 10.1046/j.1365-2958.1999.01414.x. [DOI] [PubMed] [Google Scholar]
  114. Tullberg A., Alexciev K., Pfannschmidt T., Allen J. F. Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool. Plant Cell Physiol. 2000 Sep;41(9):1045–1054. doi: 10.1093/pcp/pcd031. [DOI] [PubMed] [Google Scholar]
  115. Turmel M., Lemieux C., Burger G., Lang B. F., Otis C., Plante I., Gray M. W. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell. 1999 Sep;11(9):1717–1730. doi: 10.1105/tpc.11.9.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Unden G., Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta. 1997 Jul 4;1320(3):217–234. doi: 10.1016/s0005-2728(97)00034-0. [DOI] [PubMed] [Google Scholar]
  117. Unseld M., Marienfeld J. R., Brandt P., Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997 Jan;15(1):57–61. doi: 10.1038/ng0197-57. [DOI] [PubMed] [Google Scholar]
  118. Westphal S., Soll J., Vothknecht U. C. A vesicle transport system inside chloroplasts. FEBS Lett. 2001 Oct 12;506(3):257–261. doi: 10.1016/s0014-5793(01)02931-3. [DOI] [PubMed] [Google Scholar]
  119. Williams Bryony A. P., Hirt Robert P., Lucocq John M., Embley T. Martin. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature. 2002 Aug 22;418(6900):865–869. doi: 10.1038/nature00949. [DOI] [PubMed] [Google Scholar]
  120. Wilson R. J., Denny P. W., Preiser P. R., Rangachari K., Roberts K., Roy A., Whyte A., Strath M., Moore D. J., Moore P. W. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 1996 Aug 16;261(2):155–172. doi: 10.1006/jmbi.1996.0449. [DOI] [PubMed] [Google Scholar]
  121. Wilson S. B., Davidson G. S., Thomson L. M., Pearson C. K. Redox control of RNA synthesis in potato mitochondria. Eur J Biochem. 1996 Nov 15;242(1):81–85. doi: 10.1111/j.1432-1033.1996.0081r.x. [DOI] [PubMed] [Google Scholar]
  122. Winkler H. H., Neuhaus H. E. Non-mitochondrial ATP transport. Trends Biochem Sci. 1999 Feb;24(2):64–68. doi: 10.1016/s0968-0004(98)01334-6. [DOI] [PubMed] [Google Scholar]
  123. Wolfe K. H., Morden C. W., Palmer J. D. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol. 1992 Jan 5;223(1):95–104. doi: 10.1016/0022-2836(92)90718-y. [DOI] [PubMed] [Google Scholar]
  124. Wollman FA, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1 . Biochim Biophys Acta. 1999 Apr 21;1411(1):21–85. doi: 10.1016/s0005-2728(99)00043-2. [DOI] [PubMed] [Google Scholar]
  125. Yeliseev A. A., Kaplan S. TspO of rhodobacter sphaeroides. A structural and functional model for the mammalian peripheral benzodiazepine receptor. J Biol Chem. 2000 Feb 25;275(8):5657–5667. doi: 10.1074/jbc.275.8.5657. [DOI] [PubMed] [Google Scholar]
  126. Zerges William. Does complexity constrain organelle evolution? Trends Plant Sci. 2002 Apr;7(4):175–182. doi: 10.1016/s1360-1385(02)02233-1. [DOI] [PubMed] [Google Scholar]
  127. Zhang Z., Cavalier-Smith T., Green B. R. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol Biol Evol. 2001 Aug;18(8):1558–1565. doi: 10.1093/oxfordjournals.molbev.a003942. [DOI] [PubMed] [Google Scholar]
  128. Zhang Z., Green B. R., Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999 Jul 8;400(6740):155–159. doi: 10.1038/22099. [DOI] [PubMed] [Google Scholar]
  129. Zouni A., Witt H. T., Kern J., Fromme P., Krauss N., Saenger W., Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature. 2001 Feb 8;409(6821):739–743. doi: 10.1038/35055589. [DOI] [PubMed] [Google Scholar]
  130. de Grey A. D. Mitochondrial gene therapy: an arena for the biomedical use of inteins. Trends Biotechnol. 2000 Sep;18(9):394–399. doi: 10.1016/s0167-7799(00)01476-1. [DOI] [PubMed] [Google Scholar]
  131. van der Giezen Mark, Slotboom Dirk Jan, Horner David S., Dyal Patricia L., Harding Marilyn, Xue Gang-Ping, Embley T. Martin, Kunji Edmund R. S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002 Feb 15;21(4):572–579. doi: 10.1093/emboj/21.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. von Heijne G. Why mitochondria need a genome. FEBS Lett. 1986 Mar 17;198(1):1–4. doi: 10.1016/0014-5793(86)81172-3. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary data file
12594916s01.pdf (208.1KB, pdf)

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES