Abstract
We discuss the suggestion that differences in the nucleotide composition between plastid and nuclear genomes may provide a selective advantage in the transposition of genes from plastid to nucleus. We show that in the adenine, thymine (AT)-rich genome of Borrelia burgdorferi several genes have an AT-content lower than the average for the genome as a whole. However, genes whose plant homologues have moved from plastid to nucleus are no less AT-rich than genes whose plant homologues have remained in the plastid, indicating that both classes of gene are able to support a high AT-content. We describe the anomalous organization of dinoflagellate plastid genes. These are located on small circles of 2-3 kbp, in contrast to the usual plastid genome organization of a single large circle of 100-200 kbp. Most circles contain a single gene. Some circles contain two genes and some contain none. Dinoflagellate plastids have retained far fewer genes than other plastids. We discuss a similarity between the dinoflagellate minicircles and the bacterial integron system.
Full Text
The Full Text of this article is available as a PDF (122.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol. 1993 Dec 21;165(4):609–631. doi: 10.1006/jtbi.1993.1210. [DOI] [PubMed] [Google Scholar]
- Allen J. F., Raven J. A. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996 May;42(5):482–492. doi: 10.1007/BF02352278. [DOI] [PubMed] [Google Scholar]
- Barbrook A. C., Howe C. J. Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet. 2000 Feb;263(1):152–158. doi: 10.1007/s004380050042. [DOI] [PubMed] [Google Scholar]
- Barbrook A. C., Lockhart P. J., Howe C. J. Phylogenetic analysis of plastid origins based on secA sequences. Curr Genet. 1998 Oct;34(4):336–341. doi: 10.1007/s002940050404. [DOI] [PubMed] [Google Scholar]
- Barbrook A. C., Symington H., Nisbet R. E., Larkum A., Howe C. J. Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum. Mol Genet Genomics. 2001 Oct 12;266(4):632–638. doi: 10.1007/s004380100582. [DOI] [PubMed] [Google Scholar]
- Basu M. K., Wilson H. J. Mercury risk from teeth. Nature. 1991 Jan 10;349(6305):109–109. doi: 10.1038/349109a0. [DOI] [PubMed] [Google Scholar]
- Cannon G. C., Hedrick L. A., Heinhorst S. Repair mechanisms of UV-induced DNA damage in soybean chloroplasts. Plant Mol Biol. 1995 Dec;29(6):1267–1277. doi: 10.1007/BF00020467. [DOI] [PubMed] [Google Scholar]
- Cerutti H., Ibrahim H. Z., Jagendorf A. T. Treatment of pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli RecA. Plant Physiol. 1993 May;102(1):155–163. doi: 10.1104/pp.102.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerutti H., Johnson A. M., Boynton J. E., Gillham N. W. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol. 1995 Jun;15(6):3003–3011. doi: 10.1128/mcb.15.6.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung A. Y., Bogorad L., Van Montagu M., Schell J. Relocating a gene for herbicide tolerance: A chloroplast gene is converted into a nuclear gene. Proc Natl Acad Sci U S A. 1988 Jan;85(2):391–395. doi: 10.1073/pnas.85.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edqvist J., Burger G., Gray M. W. Expression of mitochondrial protein-coding genes in Tetrahymena pyriformis. J Mol Biol. 2000 Mar 24;297(2):381–393. doi: 10.1006/jmbi.2000.3530. [DOI] [PubMed] [Google Scholar]
- Glöckner G., Rosenthal A., Valentin K. The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol. 2000 Oct;51(4):382–390. doi: 10.1007/s002390010101. [DOI] [PubMed] [Google Scholar]
- Hall R. M., Brookes D. E., Stokes H. W. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol. 1991 Aug;5(8):1941–1959. doi: 10.1111/j.1365-2958.1991.tb00817.x. [DOI] [PubMed] [Google Scholar]
- Hiller R. G. 'Empty' minicircles and petB/atpA and psbD/psbE (cytb559 alpha) genes in tandem in Amphidinium carterae plastid DNA. FEBS Lett. 2001 Sep 21;505(3):449–452. doi: 10.1016/s0014-5793(01)02871-x. [DOI] [PubMed] [Google Scholar]
- Howe C. J., Barbrook A. C., Lockhart P. J. Organelle genes--do they jump or are they pushed? Trends Genet. 2000 Feb;16(2):65–66. doi: 10.1016/s0168-9525(99)01919-8. [DOI] [PubMed] [Google Scholar]
- Kanevski I., Maliga P. Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1969–1973. doi: 10.1073/pnas.91.5.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang B. F., Gray M. W., Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet. 1999;33:351–397. doi: 10.1146/annurev.genet.33.1.351. [DOI] [PubMed] [Google Scholar]
- Lockhart P. J., Howe C. J., Bryant D. A., Beanland T. J., Larkum A. W. Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol. 1992 Feb;34(2):153–162. doi: 10.1007/BF00182392. [DOI] [PubMed] [Google Scholar]
- Lockhart P. J., Steel M. A., Barbrook A. C., Huson D. H., Charleston M. A., Howe C. J. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol Biol Evol. 1998 Sep;15(9):1183–1188. doi: 10.1093/oxfordjournals.molbev.a026025. [DOI] [PubMed] [Google Scholar]
- Lonsdale D. M., Hodge T. P., Fauron C. M. The physical map and organisation of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res. 1984 Dec 21;12(24):9249–9261. doi: 10.1093/nar/12.24.9249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
- Morse D., Salois P., Markovic P., Hastings J. W. A nuclear-encoded form II RuBisCO in dinoflagellates. Science. 1995 Jun 16;268(5217):1622–1624. doi: 10.1126/science.7777861. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Kaneko T., Hirosawa M., Miyajima N., Tabata S. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucleic Acids Res. 1998 Jan 1;26(1):63–67. doi: 10.1093/nar/26.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Race H. L., Herrmann R. G., Martin W. Why have organelles retained genomes? Trends Genet. 1999 Sep;15(9):364–370. doi: 10.1016/s0168-9525(99)01766-7. [DOI] [PubMed] [Google Scholar]
- Recchia G. D., Hall R. M. Origins of the mobile gene cassettes found in integrons. Trends Microbiol. 1997 Oct;5(10):389–394. doi: 10.1016/S0966-842X(97)01123-2. [DOI] [PubMed] [Google Scholar]
- Rowe-Magnus D. A., Mazel D. Integrons: natural tools for bacterial genome evolution. Curr Opin Microbiol. 2001 Oct;4(5):565–569. doi: 10.1016/s1369-5274(00)00252-6. [DOI] [PubMed] [Google Scholar]
- Rowe-Magnus D. A., Mazel D. Resistance gene capture. Curr Opin Microbiol. 1999 Oct;2(5):483–488. doi: 10.1016/s1369-5274(99)00004-1. [DOI] [PubMed] [Google Scholar]
- Stern D. B., Radwanski E. R., Kindle K. L. A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell. 1991 Mar;3(3):285–297. doi: 10.1105/tpc.3.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiura M. The chloroplast genome. Plant Mol Biol. 1992 May;19(1):149–168. doi: 10.1007/BF00015612. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Cavalier-Smith T., Green B. R. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol Biol Evol. 2001 Aug;18(8):1558–1565. doi: 10.1093/oxfordjournals.molbev.a003942. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Green B. R., Cavalier-Smith T. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol. 2000 Jul;51(1):26–40. doi: 10.1007/s002390010064. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Green B. R., Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999 Jul 8;400(6740):155–159. doi: 10.1038/22099. [DOI] [PubMed] [Google Scholar]
- Zhang Zhaoduo, Cavalier-Smith Thomas, Green Beverley R. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol. 2002 Apr;19(4):489–500. doi: 10.1093/oxfordjournals.molbev.a004104. [DOI] [PubMed] [Google Scholar]