Abstract
Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear non-coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein-targeting machinery could have helped enslave the foreign plastids.
Full Text
The Full Text of this article is available as a PDF (1,002.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson Jan O., Roger Andrew J. A cyanobacterial gene in nonphotosynthetic protists--an early chloroplast acquisition in eukaryotes? Curr Biol. 2002 Jan 22;12(2):115–119. doi: 10.1016/s0960-9822(01)00649-2. [DOI] [PubMed] [Google Scholar]
- Andersson S. G., Kurland C. G. Ancient and recent horizontal transfer events: the origins of mitochondria. APMIS Suppl. 1998;84:5–14. doi: 10.1111/j.1600-0463.1998.tb05641.x. [DOI] [PubMed] [Google Scholar]
- Archibald J. M., Cavalier-Smith T., Maier U., Douglas S. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph. J Mol Evol. 2001 Jun;52(6):490–501. doi: 10.1007/s002390010179. [DOI] [PubMed] [Google Scholar]
- Barbrook A. C., Howe C. J. Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet. 2000 Feb;263(1):152–158. doi: 10.1007/s004380050042. [DOI] [PubMed] [Google Scholar]
- Barbrook A. C., Symington H., Nisbet R. E., Larkum A., Howe C. J. Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum. Mol Genet Genomics. 2001 Oct 12;266(4):632–638. doi: 10.1007/s004380100582. [DOI] [PubMed] [Google Scholar]
- Beaton M. J., Cavalier-Smitht T. Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes. Proc Biol Sci. 1999 Oct 22;266(1433):2053–2059. doi: 10.1098/rspb.1999.0886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruce B. D. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):2–21. doi: 10.1016/s0167-4889(01)00149-5. [DOI] [PubMed] [Google Scholar]
- COMMONER B. ROLES OF DEOXYRIBONUCLEIC ACID IN INHERITANCE. Nature. 1964 Jun 6;202:960–968. doi: 10.1038/202960a0. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. A revised six-kingdom system of life. Biol Rev Camb Philos Soc. 1998 Aug;73(3):203–266. doi: 10.1017/s0006323198005167. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T., Beaton M. J. The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica. 1999;106(1-2):3–13. doi: 10.1023/a:1003701925110. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol. 2002 Jan 22;12(2):R62–R64. doi: 10.1016/s0960-9822(01)00675-3. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Eukaryote kingdoms: seven or nine? Biosystems. 1981;14(3-4):461–481. doi: 10.1016/0303-2647(81)90050-2. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Intron phylogeny: a new hypothesis. Trends Genet. 1991 May;7(5):145–148. [PubMed] [Google Scholar]
- Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000 Apr;5(4):174–182. doi: 10.1016/s1360-1385(00)01598-3. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci. 1978 Dec;34:247–278. doi: 10.1242/jcs.34.1.247. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol. 1999 JulâAug;46(4):347–366. doi: 10.1111/j.1550-7408.1999.tb04614.x. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng. 1982;11:273–302. doi: 10.1146/annurev.bb.11.060182.001421. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7–76. doi: 10.1099/00207713-52-1-7. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297–354. doi: 10.1099/00207713-52-2-297. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci. 1987;503:55–71. doi: 10.1111/j.1749-6632.1987.tb40597.x. [DOI] [PubMed] [Google Scholar]
- Clague M. J., Herrmann A. Membrane transport: deciphering fusion. Curr Biol. 2000 Oct 19;10(20):R750–R752. doi: 10.1016/s0960-9822(00)00741-7. [DOI] [PubMed] [Google Scholar]
- Cosmides L. M., Tooby J. Cytoplasmic inheritance and intragenomic conflict. J Theor Biol. 1981 Mar 7;89(1):83–129. doi: 10.1016/0022-5193(81)90181-8. [DOI] [PubMed] [Google Scholar]
- Deane J. A., Fraunholz M., Su V., Maier U-G, Martin W., Durnford D. G., McFadden G. I. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist. 2000 Oct;151(3):239–252. doi: 10.1078/1434-4610-00022. [DOI] [PubMed] [Google Scholar]
- Doetsch N. A., Thompson M. D., Favreau M. R., Hallick R. B. Comparison of psbK operon organization and group III intron content in chloroplast genomes of 12 Euglenoid species. Mol Gen Genet. 2001 Jan;264(5):682–690. doi: 10.1007/s004380000355. [DOI] [PubMed] [Google Scholar]
- Doetsch N. A., Thompson M. D., Hallick R. B. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg? Mol Biol Evol. 1998 Jan;15(1):76–86. doi: 10.1093/oxfordjournals.molbev.a025850. [DOI] [PubMed] [Google Scholar]
- Doolittle W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998 Aug;14(8):307–311. doi: 10.1016/s0168-9525(98)01494-2. [DOI] [PubMed] [Google Scholar]
- Durnford D. G., Deane J. A., Tan S., McFadden G. I., Gantt E., Green B. R. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol. 1999 Jan;48(1):59–68. doi: 10.1007/pl00006445. [DOI] [PubMed] [Google Scholar]
- Eschbach S., Hofmann C. J., Maier U. G., Sitte P., Hansmann P. A eukaryotic genome of 660 kb: electrophoretic karyotype of nucleomorph and cell nucleus of the cryptomonad alga, Pyrenomonas salina. Nucleic Acids Res. 1991 Apr 25;19(8):1779–1781. doi: 10.1093/nar/19.8.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fast N. M., Kissinger J. C., Roos D. S., Keeling P. J. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol. 2001 Mar;18(3):418–426. doi: 10.1093/oxfordjournals.molbev.a003818. [DOI] [PubMed] [Google Scholar]
- Frantz C., Ebel C., Paulus F., Imbault P. Characterization of trans-splicing in Euglenoids. Curr Genet. 2000 Jun;37(6):349–355. doi: 10.1007/s002940000116. [DOI] [PubMed] [Google Scholar]
- Gajadhar A. A., Marquardt W. C., Hall R., Gunderson J., Ariztia-Carmona E. V., Sogin M. L. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol. 1991 Mar;45(1):147–154. doi: 10.1016/0166-6851(91)90036-6. [DOI] [PubMed] [Google Scholar]
- Gibbs S. P. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci. 1981;361:193–208. doi: 10.1111/j.1749-6632.1981.tb46519.x. [DOI] [PubMed] [Google Scholar]
- Gibbs S. P. The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. J Cell Sci. 1979 Feb;35:253–266. doi: 10.1242/jcs.35.1.253. [DOI] [PubMed] [Google Scholar]
- Gilson P. R., McFadden G. I. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7737–7742. doi: 10.1073/pnas.93.15.7737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilson P., McFadden G. I. The chlorarachniophyte: a cell with two different nuclei and two different telomeres. Chromosoma. 1995 May;103(9):635–641. doi: 10.1007/BF00357690. [DOI] [PubMed] [Google Scholar]
- Gilson Paul R., McFadden Geoffrey I. Jam packed genomes--a preliminary, comparative analysis of nucleomorphs. Genetica. 2002 May;115(1):13–28. doi: 10.1023/a:1016011812442. [DOI] [PubMed] [Google Scholar]
- Gockel G., Hachtel W. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist. 2000 Dec;151(4):347–351. doi: 10.1078/S1434-4610(04)70033-4. [DOI] [PubMed] [Google Scholar]
- Gregory T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc. 2001 Feb;76(1):65–101. doi: 10.1017/s1464793100005595. [DOI] [PubMed] [Google Scholar]
- Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993 Jul 25;21(15):3537–3544. doi: 10.1093/nar/21.15.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannaert V., Brinkmann H., Nowitzki U., Lee J. A., Albert M. A., Sensen C. W., Gaasterland T., Müller M., Michels P., Martin W. Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. Mol Biol Evol. 2000 Jul;17(7):989–1000. doi: 10.1093/oxfordjournals.molbev.a026395. [DOI] [PubMed] [Google Scholar]
- He C. Y., Shaw M. K., Pletcher C. H., Striepen B., Tilney L. G., Roos D. S. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J. 2001 Feb 1;20(3):330–339. doi: 10.1093/emboj/20.3.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiller R. G. 'Empty' minicircles and petB/atpA and psbD/psbE (cytb559 alpha) genes in tandem in Amphidinium carterae plastid DNA. FEBS Lett. 2001 Sep 21;505(3):449–452. doi: 10.1016/s0014-5793(01)02871-x. [DOI] [PubMed] [Google Scholar]
- Hiller R. G., Crossley L. G., Wrench P. M., Santucci N., Hofmann E. The 15-kDa forms of the apo-peridinin-chlorophyll a protein (PCP) in dinoflagellates show high identity with the apo-32 kDa PCP forms, and have similar N-terminal leaders and gene arrangements. Mol Genet Genomics. 2001 Oct;266(2):254–259. doi: 10.1007/s004380100551. [DOI] [PubMed] [Google Scholar]
- Hiltbrunner A., Bauer J., Vidi P. A., Infanger S., Weibel P., Hohwy M., Kessler F. Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J Cell Biol. 2001 Jul 23;154(2):309–316. doi: 10.1083/jcb.200104022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopkins J., Fowler R., Krishna S., Wilson I., Mitchell G., Bannister L. The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist. 1999 Oct;150(3):283–295. doi: 10.1016/S1434-4610(99)70030-1. [DOI] [PubMed] [Google Scholar]
- Inagaki J., Fujita Y., Hase T., Yamamoto Y. Protein translocation within chloroplast is similar in Euglena and higher plants. Biochem Biophys Res Commun. 2000 Oct 22;277(2):436–442. doi: 10.1006/bbrc.2000.3702. [DOI] [PubMed] [Google Scholar]
- Ishida K., Cao Y., Hasegawa M., Okada N., Hara Y. The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu. J Mol Evol. 1997 Dec;45(6):682–687. doi: 10.1007/pl00006272. [DOI] [PubMed] [Google Scholar]
- Jarvis P., Soll J. Toc, Tic, and chloroplast protein import. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):64–79. doi: 10.1016/s0167-4889(01)00147-1. [DOI] [PubMed] [Google Scholar]
- Joiner Keith A., Roos David S. Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J Cell Biol. 2002 May 13;157(4):557–563. doi: 10.1083/jcb.200112144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katinka M. D., Duprat S., Cornillot E., Méténier G., Thomarat F., Prensier G., Barbe V., Peyretaillade E., Brottier P., Wincker P. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature. 2001 Nov 22;414(6862):450–453. doi: 10.1038/35106579. [DOI] [PubMed] [Google Scholar]
- Keeling P. J., Deane J. A., McFadden G. I. The phylogenetic position of alpha- and beta-tubulins from the Chlorarachnion host and Cercomonas (Cercozoa). J Eukaryot Microbiol. 1998 Sep-Oct;45(5):561–570. doi: 10.1111/j.1550-7408.1998.tb05117.x. [DOI] [PubMed] [Google Scholar]
- Kessler F., Blobel G. Interaction of the protein import and folding machineries of the chloroplast. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7684–7689. doi: 10.1073/pnas.93.15.7684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krepinsky K., Plaumann M., Martin W., Schnarrenberger C. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes. Eur J Biochem. 2001 May;268(9):2678–2686. doi: 10.1046/j.1432-1327.2001.02154.x. [DOI] [PubMed] [Google Scholar]
- Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J., Palmer J. D., Roos D. S. A plastid of probable green algal origin in Apicomplexan parasites. Science. 1997 Mar 7;275(5305):1485–1489. doi: 10.1126/science.275.5305.1485. [DOI] [PubMed] [Google Scholar]
- Lee Y. J., Kim D. H., Kim Y. W., Hwang I. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell. 2001 Oct;13(10):2175–2190. doi: 10.1105/tpc.010232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemieux C., Otis C., Turmel M. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature. 2000 Feb 10;403(6770):649–652. doi: 10.1038/35001059. [DOI] [PubMed] [Google Scholar]
- Linton E. W., Hittner D., Lewandowski C., Auld T., Triemer R. E. A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol. 1999 Mar-Apr;46(2):217–223. doi: 10.1111/j.1550-7408.1999.tb04606.x. [DOI] [PubMed] [Google Scholar]
- Maier U. G., Douglas S. E., Cavalier-Smith T. The nucleo morph genomes of cryptophytes and chlorarachniophytes. Protist. 2000 Aug;151(2):103–109. doi: 10.1078/1434-4610-00011. [DOI] [PubMed] [Google Scholar]
- Maier U. G., Hofmann C. J., Eschbach S., Wolters J., Igloi G. L. Demonstration of nucleomorph-encoded eukaryotic small subunit ribosomal RNA in cryptomonads. Mol Gen Genet. 1991 Nov;230(1-2):155–160. doi: 10.1007/BF00290663. [DOI] [PubMed] [Google Scholar]
- Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
- Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and Why? . Plant Physiol. 1998 Sep;118(1):9–17. doi: 10.1104/pp.118.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuzaki M., Kikuchi T., Kita K., Kojima S., Kuroiwa T. Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma. 2001;218(3-4):180–191. doi: 10.1007/BF01306607. [DOI] [PubMed] [Google Scholar]
- McFadden G. I., Gilson P. R., Douglas S. E., Cavalier-Smith T., Hofmann C. J., Maier U. G. Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet. 1997 Feb;13(2):46–49. doi: 10.1016/s0168-9525(97)01010-x. [DOI] [PubMed] [Google Scholar]
- McFadden G. I. Plastids and protein targeting. J Eukaryot Microbiol. 1999 Jul-Aug;46(4):339–346. doi: 10.1111/j.1550-7408.1999.tb04613.x. [DOI] [PubMed] [Google Scholar]
- McFadden G. I., Reith M. E., Munholland J., Lang-Unnasch N. Plastid in human parasites. Nature. 1996 Jun 6;381(6582):482–482. doi: 10.1038/381482a0. [DOI] [PubMed] [Google Scholar]
- Moreira D., Le Guyader H., Philippe H. The origin of red algae and the evolution of chloroplasts. Nature. 2000 May 4;405(6782):69–72. doi: 10.1038/35011054. [DOI] [PubMed] [Google Scholar]
- Mori H., Cline K. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):80–90. doi: 10.1016/s0167-4889(01)00150-1. [DOI] [PubMed] [Google Scholar]
- Murray A. W., Szostak J. W. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1985;1:289–315. doi: 10.1146/annurev.cb.01.110185.001445. [DOI] [PubMed] [Google Scholar]
- Müllner A. N., Angeler D. G., Samuel R., Linton E. W., Triemer R. E. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol. 2001 May;51(Pt 3):783–791. doi: 10.1099/00207713-51-3-783. [DOI] [PubMed] [Google Scholar]
- Niu F., Wen L. Hemispherical variations in seismic velocity at the top of the Earth's inner core. Nature. 2001 Apr 26;410(6832):1081–1084. doi: 10.1038/35074073. [DOI] [PubMed] [Google Scholar]
- Oborník Miroslav, Van de Peer Yves, Hypsa Václav, Frickey Tancred, Slapeta Jan R., Meyer Axel, Lukes Julius. Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene. 2002 Feb 20;285(1-2):109–118. doi: 10.1016/s0378-1119(02)00427-4. [DOI] [PubMed] [Google Scholar]
- Oliveira M. C., Bhattacharya D. Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. Am J Bot. 2000 Apr;87(4):482–492. [PubMed] [Google Scholar]
- Petrov D. A. Evolution of genome size: new approaches to an old problem. Trends Genet. 2001 Jan;17(1):23–28. doi: 10.1016/s0168-9525(00)02157-0. [DOI] [PubMed] [Google Scholar]
- Petrov Dmitri A. Mutational equilibrium model of genome size evolution. Theor Popul Biol. 2002 Jun;61(4):531–544. doi: 10.1006/tpbi.2002.1605. [DOI] [PubMed] [Google Scholar]
- Pont-Kingdon G., Okada N. A., Macfarlane J. L., Beagley C. T., Watkins-Sims C. D., Cavalier-Smith T., Clark-Walker G. D., Wolstenholme D. R. Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol. 1998 Apr;46(4):419–431. doi: 10.1007/pl00006321. [DOI] [PubMed] [Google Scholar]
- Preisfeld A., Busse I., Klingberg M., Talke S., Ruppel H. G. Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa). Int J Syst Evol Microbiol. 2001 May;51(Pt 3):751–758. doi: 10.1099/00207713-51-3-751. [DOI] [PubMed] [Google Scholar]
- Rivier C., Goldschmidt-Clermont M., Rochaix J. D. Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J. 2001 Apr 2;20(7):1765–1773. doi: 10.1093/emboj/20.7.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saldarriaga J. F., Taylor F. J., Keeling P. J., Cavalier-Smith T. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol. 2001 Sep;53(3):204–213. doi: 10.1007/s002390010210. [DOI] [PubMed] [Google Scholar]
- Schleiff E., Klösgen R. B. Without a little help from 'my' friends: direct insertion of proteins into chloroplast membranes? Biochim Biophys Acta. 2001 Dec 12;1541(1-2):22–33. doi: 10.1016/s0167-4889(01)00152-5. [DOI] [PubMed] [Google Scholar]
- Schleiff E., Tien R., Salomon M., Soll J. Lipid composition of outer leaflet of chloroplast outer envelope determines topology of OEP7. Mol Biol Cell. 2001 Dec;12(12):4090–4102. doi: 10.1091/mbc.12.12.4090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekiguchi Hiroshi, Moriya Mayumi, Nakayama Takeshi, Inouye Isao. Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist. 2002 Jun;153(2):157–167. doi: 10.1078/1434-4610-00094. [DOI] [PubMed] [Google Scholar]
- Selosse M. -A., Albert B., Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001 Mar 1;16(3):135–141. doi: 10.1016/s0169-5347(00)02084-x. [DOI] [PubMed] [Google Scholar]
- Sheveleva Elena V., Giordani Nicole V., Hallick Richard B. Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species. Nucleic Acids Res. 2002 Mar 1;30(5):1247–1254. doi: 10.1093/nar/30.5.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stechmann Alexandra, Cavalier-Smith Thomas. Rooting the eukaryote tree by using a derived gene fusion. Science. 2002 Jul 5;297(5578):89–91. doi: 10.1126/science.1071196. [DOI] [PubMed] [Google Scholar]
- Steiner Jürgen M., Löffelhardt Wolfgang. Protein import into cyanelles. Trends Plant Sci. 2002 Feb;7(2):72–77. doi: 10.1016/s1360-1385(01)02179-3. [DOI] [PubMed] [Google Scholar]
- Stibitz T. B., Keeling P. J., Bhattacharya D. Symbiotic origin of a novel actin gene in the cryptophyte Pyrenomonas helgolandii. Mol Biol Evol. 2000 Nov;17(11):1731–1738. doi: 10.1093/oxfordjournals.molbev.a026271. [DOI] [PubMed] [Google Scholar]
- Striepen B., Crawford M. J., Shaw M. K., Tilney L. G., Seeber F., Roos D. S. The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol. 2000 Dec 25;151(7):1423–1434. doi: 10.1083/jcb.151.7.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sulli C., Fang Z., Muchhal U., Schwartzbach S. D. Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J Biol Chem. 1999 Jan 1;274(1):457–463. doi: 10.1074/jbc.274.1.457. [DOI] [PubMed] [Google Scholar]
- Tengs T., Dahlberg O. J., Shalchian-Tabrizi K., Klaveness D., Rudi K., Delwiche C. F., Jakobsen K. S. Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol. 2000 May;17(5):718–729. doi: 10.1093/oxfordjournals.molbev.a026350. [DOI] [PubMed] [Google Scholar]
- Thompson M. D., Copertino D. W., Thompson E., Favreau M. R., Hallick R. B. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. Nucleic Acids Res. 1995 Dec 11;23(23):4745–4752. doi: 10.1093/nar/23.23.4745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson M. D., Zhang L., Hong L., Hallick R. B. Extensive structural conservation exists among several homologs of two Euglena chloroplast group II introns. Mol Gen Genet. 1997 Dec;257(1):45–54. doi: 10.1007/s004380050622. [DOI] [PubMed] [Google Scholar]
- Thompson M. D., Zhang L., Hong L., Hallick R. B. Two new group-II twintrons in the Euglena gracilis chloroplast are absent in basally branching Euglena species. Curr Genet. 1997 Jan;31(1):89–95. doi: 10.1007/s002940050180. [DOI] [PubMed] [Google Scholar]
- Tomitani A., Okada K., Miyashita H., Matthijs H. C., Ohno T., Tanaka A. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature. 1999 Jul 8;400(6740):159–162. doi: 10.1038/22101. [DOI] [PubMed] [Google Scholar]
- Tovar J., Fischer A., Clark C. G. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999 Jun;32(5):1013–1021. doi: 10.1046/j.1365-2958.1999.01414.x. [DOI] [PubMed] [Google Scholar]
- Tu S. L., Li H. M. Insertion of OEP14 into the outer envelope membrane is mediated by proteinaceous components of chloroplasts. Plant Cell. 2000 Oct;12(10):1951–1960. doi: 10.1105/tpc.12.10.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turmel Monique, Otis Christian, Lemieux Claude. The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol. 2002 Jan;19(1):24–38. doi: 10.1093/oxfordjournals.molbev.a003979. [DOI] [PubMed] [Google Scholar]
- Van de Peer Y., Rensing S. A., Maier U. G., De Wachter R. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7732–7736. doi: 10.1073/pnas.93.15.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vickerman Keith, Le Ray Dominique, Hoef-Emden Kerstin, De Jonckheere Johan. The soil flagellate Proleptomonas faecicola: cell organisation and phylogeny suggest that the only described free-living trypanosomatid is not a kinetoplastid but has cercomonad affinities. Protist. 2002 Mar;153(1):9–24. doi: 10.1078/1434-4610-00079. [DOI] [PubMed] [Google Scholar]
- Wilson R. J., Denny P. W., Preiser P. R., Rangachari K., Roberts K., Roy A., Whyte A., Strath M., Moore D. J., Moore P. W. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 1996 Aug 16;261(2):155–172. doi: 10.1006/jmbi.1996.0449. [DOI] [PubMed] [Google Scholar]
- Wintz H., Grienenberger J. M., Weil J. H., Lonsdale D. M. Location and nucleotide sequence of two tRNA genes and a tRNA pseudo-gene in the maize mitochondrial genome: evidence for the transcription of a chloroplast gene in mitochondria. Curr Genet. 1988 Mar;13(3):247–254. doi: 10.1007/BF00387771. [DOI] [PubMed] [Google Scholar]
- Yu T. S., Li H. Chloroplast protein translocon components atToc159 and atToc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol. 2001 Sep;127(1):90–96. doi: 10.1104/pp.127.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zauner S., Fraunholz M., Wastl J., Penny S., Beaton M., Cavalier-Smith T., Maier U. G., Douglas S. Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):200–205. doi: 10.1073/pnas.97.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Xiao-Ping, Glaser Elzbieta. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sci. 2002 Jan;7(1):14–21. doi: 10.1016/s1360-1385(01)02180-x. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Cavalier-Smith T., Green B. R. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Mol Biol Evol. 2001 Aug;18(8):1558–1565. doi: 10.1093/oxfordjournals.molbev.a003942. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Green B. R., Cavalier-Smith T. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol. 2000 Jul;51(1):26–40. doi: 10.1007/s002390010064. [DOI] [PubMed] [Google Scholar]
- Zhang Z., Green B. R., Cavalier-Smith T. Single gene circles in dinoflagellate chloroplast genomes. Nature. 1999 Jul 8;400(6740):155–159. doi: 10.1038/22099. [DOI] [PubMed] [Google Scholar]
- Zhang Zhaoduo, Cavalier-Smith Thomas, Green Beverley R. Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol. 2002 Apr;19(4):489–500. doi: 10.1093/oxfordjournals.molbev.a004104. [DOI] [PubMed] [Google Scholar]
- Zuegge J., Ralph S., Schmuker M., McFadden G. I., Schneider G. Deciphering apicoplast targeting signals--feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene. 2001 Dec 12;280(1-2):19–26. doi: 10.1016/s0378-1119(01)00776-4. [DOI] [PubMed] [Google Scholar]
- van Dooren G. G., Schwartzbach S. D., Osafune T., McFadden G. I. Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta. 2001 Dec 12;1541(1-2):34–53. doi: 10.1016/s0167-4889(01)00154-9. [DOI] [PubMed] [Google Scholar]