Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jan 29;358(1429):223–230. doi: 10.1098/rstb.2002.1181

Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach.

Jason Raymond 1, Olga Zhaxybayeva 1, J Peter Gogarten 1, Robert E Blankenship 1
PMCID: PMC1693105  PMID: 12594930

Abstract

Reconstructing the early evolution of photosynthesis has been guided in part by the geological record, but the complexity and great antiquity of these early events require molecular genetic techniques as the primary tools of inference. Recent genome sequencing efforts have made whole genome data available from representatives of each of the five phyla of bacteria with photosynthetic members, allowing extensive phylogenetic comparisons of these organisms. Here, we have undertaken whole genome comparisons using maximum likelihood to compare 527 unique sets of orthologous genes from all five photosynthetic phyla. Substantiating recent whole genome analyses of other prokaryotes, our results indicate that horizontal gene transfer (HGT) has played a significant part in the evolution of these organisms, resulting in genomes with mosaic evolutionary histories. A small plurality phylogenetic signal was observed, which may be a core of remnant genes not subject to HGT, or may result from a propensity for gene exchange between two or more of the photosynthetic organisms compared.

Full Text

The Full Text of this article is available as a PDF (398.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aravind L., Tatusov R. L., Wolf Y. I., Walker D. R., Koonin E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 1998 Nov;14(11):442–444. doi: 10.1016/s0168-9525(98)01553-4. [DOI] [PubMed] [Google Scholar]
  3. Asai T., Zaporojets D., Squires C., Squires C. L. An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1971–1976. doi: 10.1073/pnas.96.5.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baymann F., Brugna M., Mühlenhoff U., Nitschke W. Daddy, where did (PS)I come from? Biochim Biophys Acta. 2001 Oct 30;1507(1-3):291–310. doi: 10.1016/s0005-2728(01)00209-2. [DOI] [PubMed] [Google Scholar]
  5. Bellemare G., Vigne R., Jordan B. R. Interaction between Escherichia coli ribosomal proteins and 5S RNA molecules: recognition of prokaryotic 5S RNAs and rejection of eukaryotic 5S RNAs. Biochimie. 1973;55(1):29–35. doi: 10.1016/s0300-9084(73)80233-0. [DOI] [PubMed] [Google Scholar]
  6. Bergthorsson U., Ochman H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol. 1998 Jan;15(1):6–16. doi: 10.1093/oxfordjournals.molbev.a025847. [DOI] [PubMed] [Google Scholar]
  7. Blankenship R. E., Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci. 1998 Mar;23(3):94–97. doi: 10.1016/s0968-0004(98)01186-4. [DOI] [PubMed] [Google Scholar]
  8. Boucher Y., Nesbø C. L., Doolittle W. F. Microbial genomes: dealing with diversity. Curr Opin Microbiol. 2001 Jun;4(3):285–289. doi: 10.1016/s1369-5274(00)00204-6. [DOI] [PubMed] [Google Scholar]
  9. Daya-Grosjean L., Geisser M., Stöffler G., Garret R. A. Heterologous protein-RNA interactions in bacterial ribosomes. FEBS Lett. 1973 Nov 15;37(1):17–20. doi: 10.1016/0014-5793(73)80416-8. [DOI] [PubMed] [Google Scholar]
  10. De Marais D. J. Evolution. When did photosynthesis emerge on Earth? Science. 2000 Sep 8;289(5485):1703–1705. [PubMed] [Google Scholar]
  11. Doolittle W. F. Lateral genomics. Trends Cell Biol. 1999 Dec;9(12):M5–M8. [PubMed] [Google Scholar]
  12. Drummond A., Strimmer K. PAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics. 2001 Jul;17(7):662–663. doi: 10.1093/bioinformatics/17.7.662. [DOI] [PubMed] [Google Scholar]
  13. Gaidos E. J., Nealson K. H., Kirschvink J. L. Life in ice-covered oceans. Science. 1999 Jun 4;284(5420):1631–1633. doi: 10.1126/science.284.5420.1631. [DOI] [PubMed] [Google Scholar]
  14. Gogarten J. P., Olendzenski L. Orthologs, paralogs and genome comparisons. Curr Opin Genet Dev. 1999 Dec;9(6):630–636. doi: 10.1016/s0959-437x(99)00029-5. [DOI] [PubMed] [Google Scholar]
  15. Gupta R. S., Mukhtar T., Singh B. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis. Mol Microbiol. 1999 Jun;32(5):893–906. doi: 10.1046/j.1365-2958.1999.01417.x. [DOI] [PubMed] [Google Scholar]
  16. Igarashi N., Harada J., Nagashima S., Matsuura K., Shimada K., Nagashima K. V. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol. 2001 Apr;52(4):333–341. doi: 10.1007/s002390010163. [DOI] [PubMed] [Google Scholar]
  17. Jain R., Rivera M. C., Lake J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801–3806. doi: 10.1073/pnas.96.7.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kumar S., Tamura K., Nei M. MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci. 1994 Apr;10(2):189–191. doi: 10.1093/bioinformatics/10.2.189. [DOI] [PubMed] [Google Scholar]
  19. Lawrence J. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev. 1999 Dec;9(6):642–648. doi: 10.1016/s0959-437x(99)00025-8. [DOI] [PubMed] [Google Scholar]
  20. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T., Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 2001 Jan 1;29(1):173–174. doi: 10.1093/nar/29.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nesbø C. L., Boucher Y., Doolittle W. F. Defining the core of nontransferable prokaryotic genes: the euryarchaeal core. J Mol Evol. 2001 Oct-Nov;53(4-5):340–350. doi: 10.1007/s002390010224. [DOI] [PubMed] [Google Scholar]
  22. Nomura M., Traub P., Bechmann H. Hybrid 30S ribosomal particles reconstituted from components of different bacterial origins. Nature. 1968 Aug 24;219(5156):793–799. doi: 10.1038/219793b0. [DOI] [PubMed] [Google Scholar]
  23. Olson J. M., Pierson B. K. Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol. 1987;108:209–248. doi: 10.1016/s0074-7696(08)61439-4. [DOI] [PubMed] [Google Scholar]
  24. Overmann Jörg, Schubert Karin. Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol. 2002 Jan 22;177(3):201–208. doi: 10.1007/s00203-001-0377-z. [DOI] [PubMed] [Google Scholar]
  25. Oyaizu H., Debrunner-Vossbrinck B., Mandelco L., Studier J. A., Woese C. R. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol. 1987;9:47–53. doi: 10.1016/s0723-2020(87)80055-3. [DOI] [PubMed] [Google Scholar]
  26. Perna N. T., Plunkett G., 3rd, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J., Kirkpatrick H. A. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001 Jan 25;409(6819):529–533. doi: 10.1038/35054089. [DOI] [PubMed] [Google Scholar]
  27. Rye R., Holland H. D. Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci. 1998 Oct;298(8):621–672. doi: 10.2475/ajs.298.8.621. [DOI] [PubMed] [Google Scholar]
  28. Schmidt Heiko A., Strimmer Korbinian, Vingron Martin, von Haeseler Arndt. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002 Mar;18(3):502–504. doi: 10.1093/bioinformatics/18.3.502. [DOI] [PubMed] [Google Scholar]
  29. Strimmer K., von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6815–6819. doi: 10.1073/pnas.94.13.6815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tatusov R. L., Galperin M. Y., Natale D. A., Koonin E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000 Jan 1;28(1):33–36. doi: 10.1093/nar/28.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tatusov R. L., Koonin E. V., Lipman D. J. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  32. Walker D. R., Koonin E. V. SEALS: a system for easy analysis of lots of sequences. Proc Int Conf Intell Syst Mol Biol. 1997;5:333–339. [PubMed] [Google Scholar]
  33. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woese C. R. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392–8396. doi: 10.1073/pnas.97.15.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wrede P., Erdmann V. A. Activities of B. stearothermophilus 50 S ribosomes reconstituted with prokaryotic and eukaryotic 5 S RNA. FEBS Lett. 1973 Jul 15;33(3):315–319. doi: 10.1016/0014-5793(73)80219-4. [DOI] [PubMed] [Google Scholar]
  36. Xiong J., Fischer W. M., Inoue K., Nakahara M., Bauer C. E. Molecular evidence for the early evolution of photosynthesis. Science. 2000 Sep 8;289(5485):1724–1730. doi: 10.1126/science.289.5485.1724. [DOI] [PubMed] [Google Scholar]
  37. Xiong Jin, Bauer Carl E. Complex evolution of photosynthesis. Annu Rev Plant Biol. 2002;53:503–521. doi: 10.1146/annurev.arplant.53.100301.135212. [DOI] [PubMed] [Google Scholar]
  38. Yap W. H., Zhang Z., Wang Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 1999 Sep;181(17):5201–5209. doi: 10.1128/jb.181.17.5201-5209.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhaxybayeva Olga, Gogarten J. Peter. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics. 2002 Feb 5;3:4–4. doi: 10.1186/1471-2164-3-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES