Abstract
All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well-defined set of red- and blue-light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus. This species uses the global two-component signal transduction cascade, RegB and RegA, to anaerobically de-repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue-light absorbing anti-repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long-lived photocycle that is initiated by blue-light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed.
Full Text
The Full Text of this article is available as a PDF (417.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer C. E., Elsen S., Bird T. H. Mechanisms for redox control of gene expression. Annu Rev Microbiol. 1999;53:495–523. doi: 10.1146/annurev.micro.53.1.495. [DOI] [PubMed] [Google Scholar]
- Bauer E., Kaspar T., Fischer H. M., Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol. 1998 Aug;180(15):3853–3863. doi: 10.1128/jb.180.15.3853-3863.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollivar D. W., Suzuki J. Y., Beatty J. T., Dobrowolski J. M., Bauer C. E. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol. 1994 Apr 15;237(5):622–640. doi: 10.1006/jmbi.1994.1260. [DOI] [PubMed] [Google Scholar]
- Bowman W. C., Du S., Bauer C. E., Kranz R. G. In vitro activation and repression of photosynthesis gene transcription in Rhodobacter capsulatus. Mol Microbiol. 1999 Jul;33(2):429–437. doi: 10.1046/j.1365-2958.1999.01490.x. [DOI] [PubMed] [Google Scholar]
- Briggs W. R., Huala E. Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol. 1999;15:33–62. doi: 10.1146/annurev.cellbio.15.1.33. [DOI] [PubMed] [Google Scholar]
- Buggy J. J., Sganga M. W., Bauer C. E. Characterization of a light-responding trans-activator responsible for differentially controlling reaction center and light-harvesting-I gene expression in Rhodobacter capsulatus. J Bacteriol. 1994 Nov;176(22):6936–6943. doi: 10.1128/jb.176.22.6936-6943.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buggy J., Bauer C. E. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol. 1995 Dec;177(23):6958–6965. doi: 10.1128/jb.177.23.6958-6965.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
- Cashmore A. R., Jarillo J. A., Wu Y. J., Liu D. Cryptochromes: blue light receptors for plants and animals. Science. 1999 Apr 30;284(5415):760–765. doi: 10.1126/science.284.5415.760. [DOI] [PubMed] [Google Scholar]
- Chen W., Jäger A., Klug G. Correction of the DNA sequence of the regB gene of Rhodobacter capsulatus with implications for the membrane topology of the sensor kinase regB. J Bacteriol. 2000 Feb;182(3):818–820. doi: 10.1128/jb.182.3.818-820.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Comolli James C., Carl Audrey J., Hall Christine, Donohue Timothy. Transcriptional activation of the Rhodobacter sphaeroides cytochrome c(2) gene P2 promoter by the response regulator PrrA. J Bacteriol. 2002 Jan;184(2):390–399. doi: 10.1128/JB.184.2.390-399.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drews G. Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev. 1985 Mar;49(1):59–70. doi: 10.1128/mr.49.1.59-70.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egger L. A., Park H., Inouye M. Signal transduction via the histidyl-aspartyl phosphorelay. Genes Cells. 1997 Mar;2(3):167–184. doi: 10.1046/j.1365-2443.1997.d01-311.x. [DOI] [PubMed] [Google Scholar]
- Elsen S., Dischert W., Colbeau A., Bauer C. E. Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol. 2000 May;182(10):2831–2837. doi: 10.1128/jb.182.10.2831-2837.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eraso J. M., Kaplan S. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1. Biochemistry. 2000 Feb 29;39(8):2052–2062. doi: 10.1021/bi9923858. [DOI] [PubMed] [Google Scholar]
- Eraso J. M., Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol. 1995 May;177(10):2695–2706. doi: 10.1128/jb.177.10.2695-2706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golecki J. R., Schumacher A., Drews G. The differentiation of the photosynthetic apparatus and the intracytoplasmic membrane in cells of Rhodopseudomonas capsulata upon variation of light intensity. Eur J Cell Biol. 1980 Dec;23(1):1–5. [PubMed] [Google Scholar]
- Gomelsky M., Horne I. M., Lee H. J., Pemberton J. M., McEwan A. G., Kaplan S. Domain structure, oligomeric state, and mutational analysis of PpsR, the Rhodobacter sphaeroides repressor of photosystem gene expression. J Bacteriol. 2000 Apr;182(8):2253–2261. doi: 10.1128/jb.182.8.2253-2261.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomelsky M., Kaplan S. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol. 1995 Mar;177(6):1634–1637. doi: 10.1128/jb.177.6.1634-1637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomelsky M., Kaplan S. Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol. 1997 Jan;179(1):128–134. doi: 10.1128/jb.179.1.128-134.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomelsky M., Kaplan S. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol. 1995 Aug;177(16):4609–4618. doi: 10.1128/jb.177.16.4609-4618.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue K., Kouadio J. L., Mosley C. S., Bauer C. E. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry. 1995 Jan 17;34(2):391–396. doi: 10.1021/bi00002a002. [DOI] [PubMed] [Google Scholar]
- Kappler Ulrike, Huston Wilhelmina M., McEwan Alastair G. Control of dimethylsulfoxide reductase expression in Rhodobacter capsulatus: the role of carbon metabolites and the response regulators DorR and RegA. Microbiology. 2002 Feb;148(Pt 2):605–614. doi: 10.1099/00221287-148-2-605. [DOI] [PubMed] [Google Scholar]
- Laratta William P., Choi Peter S., Tosques Ivan E., Shapleigh James P. Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation. J Bacteriol. 2002 Jul;184(13):3521–3529. doi: 10.1128/JB.184.13.3521-3529.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda S., Matsumoto Y., Nagashima K. V., Shimada K., Inoue K., Bauer C. E., Matsuura K. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus. J Bacteriol. 1999 Jul;181(14):4205–4215. doi: 10.1128/jb.181.14.4205-4215.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masuda Shinji, Bauer Carl E. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell. 2002 Sep 6;110(5):613–623. doi: 10.1016/s0092-8674(02)00876-0. [DOI] [PubMed] [Google Scholar]
- Masuda Shinji, Dong Chen, Swem Danielle, Setterdahl Aaron T., Knaff David B., Bauer Carl E. Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci U S A. 2002 Apr 30;99(10):7078–7083. doi: 10.1073/pnas.102013099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosley C. S., Suzuki J. Y., Bauer C. E. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol. 1994 Dec;176(24):7566–7573. doi: 10.1128/jb.176.24.7566-7573.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penfold R. J., Pemberton J. M. Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol. 1994 May;176(10):2869–2876. doi: 10.1128/jb.176.10.2869-2876.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips-Jones M. K., Hunter C. N. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodobacter sphaeroides. FEMS Microbiol Lett. 1994 Mar 1;116(3):269–275. doi: 10.1111/j.1574-6968.1994.tb06714.x. [DOI] [PubMed] [Google Scholar]
- Ponnampalam S. N., Buggy J. J., Bauer C. E. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol. 1995 Jun;177(11):2990–2997. doi: 10.1128/jb.177.11.2990-2997.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian Y., Tabita F. R. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J Bacteriol. 1996 Jan;178(1):12–18. doi: 10.1128/jb.178.1.12-18.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumacher A., Drews G. Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. Biochim Biophys Acta. 1979 Sep 11;547(3):417–428. doi: 10.1016/0005-2728(79)90022-7. [DOI] [PubMed] [Google Scholar]
- Sganga M. W., Bauer C. E. Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell. 1992 Mar 6;68(5):945–954. doi: 10.1016/0092-8674(92)90037-d. [DOI] [PubMed] [Google Scholar]
- Shimada H., Ohta H., Masuda T., Shioi Y., Takamiya K. A putative transcription factor binding to the upstream region of the puf operon in Rhodobacter sphaeroides. FEBS Lett. 1993 Aug 9;328(1-2):41–44. doi: 10.1016/0014-5793(93)80961-s. [DOI] [PubMed] [Google Scholar]
- Shimada H., Wada T., Handa H., Ohta H., Mizoguchi H., Nishimura K., Masuda T., Shioi Y., Takamiya K. A transcription factor with a leucine-zipper motif involved in light-dependent inhibition of expression of the puf operon in the photosynthetic bacterium Rhodobacter sphaeroides. Plant Cell Physiol. 1996 Jun;37(4):515–522. doi: 10.1093/oxfordjournals.pcp.a028974. [DOI] [PubMed] [Google Scholar]
- Smith H. Phytochromes and light signal perception by plants--an emerging synthesis. Nature. 2000 Oct 5;407(6804):585–591. doi: 10.1038/35036500. [DOI] [PubMed] [Google Scholar]
- Swem Danielle L., Bauer Carl E. Coordination of ubiquinol oxidase and cytochrome cbb(3) oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol. 2002 May;184(10):2815–2820. doi: 10.1128/JB.184.10.2815-2820.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swem L. R., Elsen S., Bird T. H., Swem D. L., Koch H. G., Myllykallio H., Daldal F., Bauer C. E. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol. 2001 May 25;309(1):121–138. doi: 10.1006/jmbi.2001.4652. [DOI] [PubMed] [Google Scholar]
- Thöny-Meyer L., Beck C., Preisig O., Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol. 1994 Nov;14(4):705–716. doi: 10.1111/j.1365-2958.1994.tb01308.x. [DOI] [PubMed] [Google Scholar]
- Tiwari R. P., Reeve W. G., Dilworth M. J., Glenn A. R. Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology. 1996 Jul;142(Pt 7):1693–1704. doi: 10.1099/13500872-142-7-1693. [DOI] [PubMed] [Google Scholar]
- Vichivanives P., Bird T. H., Bauer C. E., Robert Tabita F. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. J Mol Biol. 2000 Jul 28;300(5):1079–1099. doi: 10.1006/jmbi.2000.3914. [DOI] [PubMed] [Google Scholar]
- Zhu Y. S., Cook D. N., Leach F., Armstrong G. A., Alberti M., Hearst J. E. Oxygen-regulated mRNAs for light-harvesting and reaction center complexes and for bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus during the shift from anaerobic to aerobic growth. J Bacteriol. 1986 Dec;168(3):1180–1188. doi: 10.1128/jb.168.3.1180-1188.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Y. S., Hearst J. E. Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7613–7617. doi: 10.1073/pnas.83.20.7613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Y. S., Kaplan S. Effects of light, oxygen, and substrates on steady-state levels of mRNA coding for ribulose-1,5-bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol. 1985 Jun;162(3):925–932. doi: 10.1128/jb.162.3.925-932.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]