Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Mar 29;358(1431):435–445. doi: 10.1098/rstb.2002.1221

Electrophysiology and brain imaging of biological motion.

Aina Puce 1, David Perrett 1
PMCID: PMC1693130  PMID: 12689371

Abstract

The movements of the faces and bodies of other conspecifics provide stimuli of considerable interest to the social primate. Studies of single cells, field potential recordings and functional neuroimaging data indicate that specialized visual mechanisms exist in the superior temporal sulcus (STS) of both human and non-human primates that produce selective neural responses to moving natural images of faces and bodies. STS mechanisms also process simplified displays of biological motion involving point lights marking the limb articulations of animate bodies and geometrical shapes whose motion simulates purposeful behaviour. Facial movements such as deviations in eye gaze, important for gauging an individual's social attention, and mouth movements, indicative of potential utterances, generate particularly robust neural responses that differentiate between movement types. Collectively such visual processing can enable the decoding of complex social signals and through its outputs to limbic, frontal and parietal systems the STS may play a part in enabling appropriate affective responses and social behaviour.

Full Text

The Full Text of this article is available as a PDF (622.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolphs R. Social cognition and the human brain. Trends Cogn Sci. 1999 Dec;3(12):469–479. doi: 10.1016/s1364-6613(99)01399-6. [DOI] [PubMed] [Google Scholar]
  2. Aggleton J. P., Burton M. J., Passingham R. E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 1980 May 26;190(2):347–368. doi: 10.1016/0006-8993(80)90279-6. [DOI] [PubMed] [Google Scholar]
  3. Allison T, Puce A, McCarthy G. Social perception from visual cues: role of the STS region. Trends Cogn Sci. 2000 Jul;4(7):267–278. doi: 10.1016/s1364-6613(00)01501-1. [DOI] [PubMed] [Google Scholar]
  4. Baker C. I., Keysers C., Jellema T., Wicker B., Perrett D. I. Neuronal representation of disappearing and hidden objects in temporal cortex of the macaque. Exp Brain Res. 2001 Oct;140(3):375–381. doi: 10.1007/s002210100828. [DOI] [PubMed] [Google Scholar]
  5. Barbas H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol. 1988 Oct 15;276(3):313–342. doi: 10.1002/cne.902760302. [DOI] [PubMed] [Google Scholar]
  6. Bassili J. N. Facial motion in the perception of faces and of emotional expression. J Exp Psychol Hum Percept Perform. 1978 Aug;4(3):373–379. doi: 10.1037//0096-1523.4.3.373. [DOI] [PubMed] [Google Scholar]
  7. Beauchamp Michael S., Lee Kathryn E., Haxby James V., Martin Alex. Parallel visual motion processing streams for manipulable objects and human movements. Neuron. 2002 Mar 28;34(1):149–159. doi: 10.1016/s0896-6273(02)00642-6. [DOI] [PubMed] [Google Scholar]
  8. Binkofski F., Buccino G., Posse S., Seitz R. J., Rizzolatti G., Freund H. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci. 1999 Sep;11(9):3276–3286. doi: 10.1046/j.1460-9568.1999.00753.x. [DOI] [PubMed] [Google Scholar]
  9. Binkofski F., Buccino G., Stephan K. M., Rizzolatti G., Seitz R. J., Freund H. J. A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res. 1999 Sep;128(1-2):210–213. doi: 10.1007/s002210050838. [DOI] [PubMed] [Google Scholar]
  10. Blakemore S. J., Decety J. From the perception of action to the understanding of intention. Nat Rev Neurosci. 2001 Aug;2(8):561–567. doi: 10.1038/35086023. [DOI] [PubMed] [Google Scholar]
  11. Bonda E., Petrides M., Ostry D., Evans A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci. 1996 Jun 1;16(11):3737–3744. doi: 10.1523/JNEUROSCI.16-11-03737.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Boussaoud D., Ungerleider L. G., Desimone R. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol. 1990 Jun 15;296(3):462–495. doi: 10.1002/cne.902960311. [DOI] [PubMed] [Google Scholar]
  13. Calvert G. A., Bullmore E. T., Brammer M. J., Campbell R., Williams S. C., McGuire P. K., Woodruff P. W., Iversen S. D., David A. S. Activation of auditory cortex during silent lipreading. Science. 1997 Apr 25;276(5312):593–596. doi: 10.1126/science.276.5312.593. [DOI] [PubMed] [Google Scholar]
  14. Calvert G. A., Campbell R., Brammer M. J. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol. 2000 Jun 1;10(11):649–657. doi: 10.1016/s0960-9822(00)00513-3. [DOI] [PubMed] [Google Scholar]
  15. Campbell R., Landis T., Regard M. Face recognition and lipreading. A neurological dissociation. Brain. 1986 Jun;109(Pt 3):509–521. doi: 10.1093/brain/109.3.509. [DOI] [PubMed] [Google Scholar]
  16. Campbell R., MacSweeney M., Surguladze S., Calvert G., McGuire P., Suckling J., Brammer M. J., David A. S. Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cogn Brain Res. 2001 Oct;12(2):233–243. doi: 10.1016/s0926-6410(01)00054-4. [DOI] [PubMed] [Google Scholar]
  17. Campbell R. The neuropsychology of lipreading. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):39–45. doi: 10.1098/rstb.1992.0005. [DOI] [PubMed] [Google Scholar]
  18. Desimone R., Albright T. D., Gross C. G., Bruce C. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci. 1984 Aug;4(8):2051–2062. doi: 10.1523/JNEUROSCI.04-08-02051.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dittrich W. H. Action categories and the perception of biological motion. Perception. 1993;22(1):15–22. doi: 10.1068/p220015. [DOI] [PubMed] [Google Scholar]
  20. Downar Jonathan, Crawley Adrian P., Mikulis David J., Davis Karen D. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002 Jan;87(1):615–620. doi: 10.1152/jn.00636.2001. [DOI] [PubMed] [Google Scholar]
  21. Downing P. E., Jiang Y., Shuman M., Kanwisher N. A cortical area selective for visual processing of the human body. Science. 2001 Sep 28;293(5539):2470–2473. doi: 10.1126/science.1063414. [DOI] [PubMed] [Google Scholar]
  22. Eimer M. Does the face-specific N170 component reflect the activity of a specialized eye processor? Neuroreport. 1998 Sep 14;9(13):2945–2948. doi: 10.1097/00001756-199809140-00005. [DOI] [PubMed] [Google Scholar]
  23. Emery N. J. The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev. 2000 Aug;24(6):581–604. doi: 10.1016/s0149-7634(00)00025-7. [DOI] [PubMed] [Google Scholar]
  24. Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
  25. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996 Apr;119(Pt 2):593–609. doi: 10.1093/brain/119.2.593. [DOI] [PubMed] [Google Scholar]
  26. Grossman E., Donnelly M., Price R., Pickens D., Morgan V., Neighbor G., Blake R. Brain areas involved in perception of biological motion. J Cogn Neurosci. 2000 Sep;12(5):711–720. doi: 10.1162/089892900562417. [DOI] [PubMed] [Google Scholar]
  27. Grèzes J., Fonlupt P., Bertenthal B., Delon-Martin C., Segebarth C., Decety J. Does perception of biological motion rely on specific brain regions? Neuroimage. 2001 May;13(5):775–785. doi: 10.1006/nimg.2000.0740. [DOI] [PubMed] [Google Scholar]
  28. Halsband U., Schmitt J., Weyers M., Binkofski F., Grützner G., Freund H. J. Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia. Neuropsychologia. 2001;39(2):200–216. doi: 10.1016/s0028-3932(00)00088-9. [DOI] [PubMed] [Google Scholar]
  29. Hietanen J. K. Does your gaze direction and head orientation shift my visual attention? Neuroreport. 1999 Nov 8;10(16):3443–3447. doi: 10.1097/00001756-199911080-00033. [DOI] [PubMed] [Google Scholar]
  30. Hietanen J. K., Perrett D. I. Motion sensitive cells in the macaque superior temporal polysensory area: response discrimination between self-generated and externally generated pattern motion. Behav Brain Res. 1996 Apr;76(1-2):155–167. doi: 10.1016/0166-4328(95)00193-x. [DOI] [PubMed] [Google Scholar]
  31. Hietanen Jari K. Social attention orienting integrates visual information from head and body orientation. Psychol Res. 2002 Jul 2;66(3):174–179. doi: 10.1007/s00426-002-0091-8. [DOI] [PubMed] [Google Scholar]
  32. Hoffman E. A., Haxby J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci. 2000 Jan;3(1):80–84. doi: 10.1038/71152. [DOI] [PubMed] [Google Scholar]
  33. Howard R. J., Brammer M., Wright I., Woodruff P. W., Bullmore E. T., Zeki S. A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain. Curr Biol. 1996 Aug 1;6(8):1015–1019. doi: 10.1016/s0960-9822(02)00646-2. [DOI] [PubMed] [Google Scholar]
  34. Humphreys G. W., Donnelly N., Riddoch M. J. Expression is computed separately from facial identity, and it is computed separately for moving and static faces: neuropsychological evidence. Neuropsychologia. 1993 Feb;31(2):173–181. doi: 10.1016/0028-3932(93)90045-2. [DOI] [PubMed] [Google Scholar]
  35. Iacoboni M., Woods R. P., Brass M., Bekkering H., Mazziotta J. C., Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999 Dec 24;286(5449):2526–2528. doi: 10.1126/science.286.5449.2526. [DOI] [PubMed] [Google Scholar]
  36. Jeannerod M., Arbib M. A., Rizzolatti G., Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 1995 Jul;18(7):314–320. [PubMed] [Google Scholar]
  37. Jeannerod M., Decety J., Michel F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia. 1994 Apr;32(4):369–380. doi: 10.1016/0028-3932(94)90084-1. [DOI] [PubMed] [Google Scholar]
  38. Jellema T., Baker C. I., Wicker B., Perrett D. I. Neural representation for the perception of the intentionality of actions. Brain Cogn. 2000 Nov;44(2):280–302. doi: 10.1006/brcg.2000.1231. [DOI] [PubMed] [Google Scholar]
  39. Kawashima R., Imaizumi S., Mori K., Okada K., Goto R., Kiritani S., Ogawa A., Fukuda H. Selective visual and auditory attention toward utterances-a PET study. Neuroimage. 1999 Aug;10(2):209–215. doi: 10.1006/nimg.1999.0452. [DOI] [PubMed] [Google Scholar]
  40. Kleinke C. L. Gaze and eye contact: a research review. Psychol Bull. 1986 Jul;100(1):78–100. [PubMed] [Google Scholar]
  41. Kohler Evelyne, Keysers Christian, Umiltà M. Alessandra, Fogassi Leonardo, Gallese Vittorio, Rizzolatti Giacomo. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002 Aug 2;297(5582):846–848. doi: 10.1126/science.1070311. [DOI] [PubMed] [Google Scholar]
  42. Kourtzi Z., Kanwisher N. Activation in human MT/MST by static images with implied motion. J Cogn Neurosci. 2000 Jan;12(1):48–55. doi: 10.1162/08989290051137594. [DOI] [PubMed] [Google Scholar]
  43. Langton S. R., Bruce V. You must see the point: automatic processing of cues to the direction of social attention. J Exp Psychol Hum Percept Perform. 2000 Apr;26(2):747–757. doi: 10.1037//0096-1523.26.2.747. [DOI] [PubMed] [Google Scholar]
  44. McGurk H., MacDonald J. Hearing lips and seeing voices. Nature. 1976 Dec 23;264(5588):746–748. doi: 10.1038/264746a0. [DOI] [PubMed] [Google Scholar]
  45. Mistlin A. J., Perrett D. I. Visual and somatosensory processing in the macaque temporal cortex: the role of 'expectation'. Exp Brain Res. 1990;82(2):437–450. doi: 10.1007/BF00231263. [DOI] [PubMed] [Google Scholar]
  46. Narumoto J., Okada T., Sadato N., Fukui K., Yonekura Y. Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Brain Res Cogn Brain Res. 2001 Oct;12(2):225–231. doi: 10.1016/s0926-6410(01)00053-2. [DOI] [PubMed] [Google Scholar]
  47. Nishitani N., Hari R. Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):913–918. doi: 10.1073/pnas.97.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Oram M. W., Perrett D. I. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol. 1996 Jul;76(1):109–129. doi: 10.1152/jn.1996.76.1.109. [DOI] [PubMed] [Google Scholar]
  49. Pavlova M., Sokolov A. Orientation specificity in biological motion perception. Percept Psychophys. 2000 Jul;62(5):889–899. doi: 10.3758/bf03212075. [DOI] [PubMed] [Google Scholar]
  50. Pavlova Marina, Krägeloh-Mann Ingeborg, Birbaumer Niels, Sokolov Alexander. Biological motion shown backwards: the apparent-facing effect. Perception. 2002;31(4):435–443. doi: 10.1068/p3262. [DOI] [PubMed] [Google Scholar]
  51. Perrett D. I., Harries M. H., Bevan R., Thomas S., Benson P. J., Mistlin A. J., Chitty A. J., Hietanen J. K., Ortega J. E. Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol. 1989 Sep;146:87–113. doi: 10.1242/jeb.146.1.87. [DOI] [PubMed] [Google Scholar]
  52. Perrett D. I., Hietanen J. K., Oram M. W., Benson P. J. Organization and functions of cells responsive to faces in the temporal cortex. Philos Trans R Soc Lond B Biol Sci. 1992 Jan 29;335(1273):23–30. doi: 10.1098/rstb.1992.0003. [DOI] [PubMed] [Google Scholar]
  53. Perrett D. I., Rolls E. T., Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47(3):329–342. doi: 10.1007/BF00239352. [DOI] [PubMed] [Google Scholar]
  54. Perrett D. I., Smith P. A., Mistlin A. J., Chitty A. J., Head A. S., Potter D. D., Broennimann R., Milner A. D., Jeeves M. A. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav Brain Res. 1985 Aug;16(2-3):153–170. doi: 10.1016/0166-4328(85)90089-0. [DOI] [PubMed] [Google Scholar]
  55. Perrett D. I., Smith P. A., Potter D. D., Mistlin A. J., Head A. S., Milner A. D., Jeeves M. A. Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum Neurobiol. 1984;3(4):197–208. [PubMed] [Google Scholar]
  56. Perrett D. I., Smith P. A., Potter D. D., Mistlin A. J., Head A. S., Milner A. D., Jeeves M. A. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci. 1985 Jan 22;223(1232):293–317. doi: 10.1098/rspb.1985.0003. [DOI] [PubMed] [Google Scholar]
  57. Puce A., Allison T., Bentin S., Gore J. C., McCarthy G. Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci. 1998 Mar 15;18(6):2188–2199. doi: 10.1523/JNEUROSCI.18-06-02188.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rizzolatti G., Camarda R., Fogassi L., Gentilucci M., Luppino G., Matelli M. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res. 1988;71(3):491–507. doi: 10.1007/BF00248742. [DOI] [PubMed] [Google Scholar]
  59. Rizzolatti G., Fadiga L., Gallese V., Fogassi L. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res. 1996 Mar;3(2):131–141. doi: 10.1016/0926-6410(95)00038-0. [DOI] [PubMed] [Google Scholar]
  60. Rizzolatti G., Fadiga L., Matelli M., Bettinardi V., Paulesu E., Perani D., Fazio F. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res. 1996 Sep;111(2):246–252. doi: 10.1007/BF00227301. [DOI] [PubMed] [Google Scholar]
  61. Rizzolatti G., Fogassi L., Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001 Sep;2(9):661–670. doi: 10.1038/35090060. [DOI] [PubMed] [Google Scholar]
  62. Sams M., Aulanko R., Hämäläinen M., Hari R., Lounasmaa O. V., Lu S. T., Simola J. Seeing speech: visual information from lip movements modifies activity in the human auditory cortex. Neurosci Lett. 1991 Jun 10;127(1):141–145. doi: 10.1016/0304-3940(91)90914-f. [DOI] [PubMed] [Google Scholar]
  63. Schenk T., Zihl J. Visual motion perception after brain damage: II. Deficits in form-from-motion perception. Neuropsychologia. 1997 Sep;35(9):1299–1310. doi: 10.1016/s0028-3932(97)00005-5. [DOI] [PubMed] [Google Scholar]
  64. Sirigu A., Duhamel J. R., Cohen L., Pillon B., Dubois B., Agid Y. The mental representation of hand movements after parietal cortex damage. Science. 1996 Sep 13;273(5281):1564–1568. doi: 10.1126/science.273.5281.1564. [DOI] [PubMed] [Google Scholar]
  65. Taylor M. J., Edmonds G. E., McCarthy G., Allison T. Eyes first! Eye processing develops before face processing in children. Neuroreport. 2001 Jun 13;12(8):1671–1676. doi: 10.1097/00001756-200106130-00031. [DOI] [PubMed] [Google Scholar]
  66. Umiltà M. A., Kohler E., Gallese V., Fogassi L., Fadiga L., Keysers C., Rizzolatti G. I know what you are doing. a neurophysiological study. Neuron. 2001 Jul 19;31(1):155–165. doi: 10.1016/s0896-6273(01)00337-3. [DOI] [PubMed] [Google Scholar]
  67. Vaina L. M., Lemay M., Bienfang D. C., Choi A. Y., Nakayama K. Intact "biological motion" and "structure from motion" perception in a patient with impaired motion mechanisms: a case study. Vis Neurosci. 1990 Oct;5(4):353–369. doi: 10.1017/s0952523800000444. [DOI] [PubMed] [Google Scholar]
  68. Vuilleumier P. Perceived gaze direction in faces and spatial attention: a study in patients with parietal damage and unilateral neglect. Neuropsychologia. 2002;40(7):1013–1026. doi: 10.1016/s0028-3932(01)00153-1. [DOI] [PubMed] [Google Scholar]
  69. Wachsmuth E., Oram M. W., Perrett D. I. Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb Cortex. 1994 Sep-Oct;4(5):509–522. doi: 10.1093/cercor/4.5.509. [DOI] [PubMed] [Google Scholar]
  70. Wheaton K. J., Pipingas A., Silberstein R. B., Puce A. Human neural responses elicited to observing the actions of others. Vis Neurosci. 2001 May-Jun;18(3):401–406. doi: 10.1017/s0952523801183069. [DOI] [PubMed] [Google Scholar]
  71. Wicker B., Michel F., Henaff M. A., Decety J. Brain regions involved in the perception of gaze: a PET study. Neuroimage. 1998 Aug;8(2):221–227. doi: 10.1006/nimg.1998.0357. [DOI] [PubMed] [Google Scholar]
  72. Williams J. H., Whiten A., Suddendorf T., Perrett D. I. Imitation, mirror neurons and autism. Neurosci Biobehav Rev. 2001 Jun;25(4):287–295. doi: 10.1016/s0149-7634(01)00014-8. [DOI] [PubMed] [Google Scholar]
  73. di Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91(1):176–180. doi: 10.1007/BF00230027. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES