Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Mar 29;358(1431):593–602. doi: 10.1098/rstb.2002.1238

A unifying computational framework for motor control and social interaction.

Daniel M Wolpert 1, Kenji Doya 1, Mitsuo Kawato 1
PMCID: PMC1693134  PMID: 12689384

Abstract

Recent empirical studies have implicated the use of the motor system during action observation, imitation and social interaction. In this paper, we explore the computational parallels between the processes that occur in motor control and in action observation, imitation, social interaction and theory of mind. In particular, we examine the extent to which motor commands acting on the body can be equated with communicative signals acting on other people and suggest that computational solutions for motor control may have been extended to the domain of social interaction.

Full Text

The Full Text of this article is available as a PDF (336.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doya Kenji, Samejima Kazuyuki, Katagiri Ken-ichi, Kawato Mitsuo. Multiple model-based reinforcement learning. Neural Comput. 2002 Jun;14(6):1347–1369. doi: 10.1162/089976602753712972. [DOI] [PubMed] [Google Scholar]
  2. Fadiga L., Fogassi L., Pavesi G., Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995 Jun;73(6):2608–2611. doi: 10.1152/jn.1995.73.6.2608. [DOI] [PubMed] [Google Scholar]
  3. Fadiga Luciano, Craighero Laila, Buccino Giovanni, Rizzolatti Giacomo. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci. 2002 Jan;15(2):399–402. doi: 10.1046/j.0953-816x.2001.01874.x. [DOI] [PubMed] [Google Scholar]
  4. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex. Brain. 1996 Apr;119(Pt 2):593–609. doi: 10.1093/brain/119.2.593. [DOI] [PubMed] [Google Scholar]
  5. Gallese Vittorio. The manifold nature of interpersonal relations: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci. 2003 Mar 29;358(1431):517–528. doi: 10.1098/rstb.2002.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghahramani Z., Wolpert D. M. Modular decomposition in visuomotor learning. Nature. 1997 Mar 27;386(6623):392–395. doi: 10.1038/386392a0. [DOI] [PubMed] [Google Scholar]
  7. Grafton S. T., Fadiga L., Arbib M. A., Rizzolatti G. Premotor cortex activation during observation and naming of familiar tools. Neuroimage. 1997 Nov;6(4):231–236. doi: 10.1006/nimg.1997.0293. [DOI] [PubMed] [Google Scholar]
  8. Grèzes J., Fonlupt P., Bertenthal B., Delon-Martin C., Segebarth C., Decety J. Does perception of biological motion rely on specific brain regions? Neuroimage. 2001 May;13(5):775–785. doi: 10.1006/nimg.2000.0740. [DOI] [PubMed] [Google Scholar]
  9. Harris C. M., Wolpert D. M. Signal-dependent noise determines motor planning. Nature. 1998 Aug 20;394(6695):780–784. doi: 10.1038/29528. [DOI] [PubMed] [Google Scholar]
  10. Haruno M., Wolpert D. M., Kawato M. Mosaic model for sensorimotor learning and control. Neural Comput. 2001 Oct;13(10):2201–2220. doi: 10.1162/089976601750541778. [DOI] [PubMed] [Google Scholar]
  11. Hauser Marc D., Chomsky Noam, Fitch W. Tecumseh. The faculty of language: what is it, who has it, and how did it evolve? Science. 2002 Nov 22;298(5598):1569–1579. doi: 10.1126/science.298.5598.1569. [DOI] [PubMed] [Google Scholar]
  12. Hines W. G., O'Hara-Hines R. J., Brooke J. D. A multivariate solution for cyclic data, applied in modelling locomotor forces. Biol Cybern. 1987;56(1):1–9. doi: 10.1007/BF00333062. [DOI] [PubMed] [Google Scholar]
  13. Iacoboni M., Woods R. P., Brass M., Bekkering H., Mazziotta J. C., Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999 Dec 24;286(5449):2526–2528. doi: 10.1126/science.286.5449.2526. [DOI] [PubMed] [Google Scholar]
  14. Kawato Mitsuo, Wada Yasuhiro, Nakano Eri, Osu Rieko, Koike Yasuharu, Gomi Hiroaki, Gandolfo Francesca, Schaal Stefan, Miyamoto Hiroyuki. A Kendama Learning Robot Based on Bi-directional Theory. Neural Netw. 1996 Nov;9(8):1281–1302. doi: 10.1016/s0893-6080(96)00043-3. [DOI] [PubMed] [Google Scholar]
  15. Liberman AM, Whalen DH. On the relation of speech to language. Trends Cogn Sci. 2000 May;4(5):187–196. doi: 10.1016/s1364-6613(00)01471-6. [DOI] [PubMed] [Google Scholar]
  16. Martin A., Wiggs C. L., Ungerleider L. G., Haxby J. V. Neural correlates of category-specific knowledge. Nature. 1996 Feb 15;379(6566):649–652. doi: 10.1038/379649a0. [DOI] [PubMed] [Google Scholar]
  17. Rizzolatti G., Arbib M. A. Language within our grasp. Trends Neurosci. 1998 May;21(5):188–194. doi: 10.1016/s0166-2236(98)01260-0. [DOI] [PubMed] [Google Scholar]
  18. Schaal Stefan, Ijspeert Auke, Billard Aude. Computational approaches to motor learning by imitation. Philos Trans R Soc Lond B Biol Sci. 2003 Mar 29;358(1431):537–547. doi: 10.1098/rstb.2002.1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wada Y., Koike Y., Vatikiotis-Bateson E., Kawato M. A computational theory for movement pattern recognition based on optimal movement pattern generation. Biol Cybern. 1995 Jun;73(1):15–25. doi: 10.1007/BF00199052. [DOI] [PubMed] [Google Scholar]
  20. Wohlschläger Andreas, Gattis Merideth, Bekkering Harold. Action generation and action perception in imitation: an instance of the ideomotor principle. Philos Trans R Soc Lond B Biol Sci. 2003 Mar 29;358(1431):501–515. doi: 10.1098/rstb.2002.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wolpert D. M., Flanagan J. R. Motor prediction. Curr Biol. 2001 Sep 18;11(18):R729–R732. doi: 10.1016/s0960-9822(01)00432-8. [DOI] [PubMed] [Google Scholar]
  22. Wolpert D. M., Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000 Nov;3 (Suppl):1212–1217. doi: 10.1038/81497. [DOI] [PubMed] [Google Scholar]
  23. Wolpert D. M., Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998 Oct;11(7-8):1317–1329. doi: 10.1016/s0893-6080(98)00066-5. [DOI] [PubMed] [Google Scholar]
  24. Wolpert D. M., Miall R. C. Forward Models for Physiological Motor Control. Neural Netw. 1996 Nov;9(8):1265–1279. doi: 10.1016/s0893-6080(96)00035-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES