Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Apr 29;358(1432):805–814. doi: 10.1098/rstb.2002.1224

MAPK, CREB and zif268 are all required for the consolidation of recognition memory.

Bruno Bozon 1, Aine Kelly 1, Sheena A Josselyn 1, Alcino J Silva 1, Sabrina Davis 1, Serge Laroche 1
PMCID: PMC1693143  PMID: 12740127

Abstract

There has been nearly a century of interest in the idea that encoding and storage of information in the brain requires changes in the efficacy of synaptic connections between neurons that are activated during learning. Recent research into the molecular mechanisms of long-term potentiation (LTP) has brought about new knowledge that has provided valuable insights into the neural mechanisms of memory storage. The evidence indicates that rapid activation of the genetic machinery can be a key mechanism underlying the enduring modification of neural networks required for the stability of memories. In recent years, a wealth of experimental data has highlighted the importance of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signalling in the regulation of gene transcription in neurons. Here, we briefly review experiments that have shown MAPK/ERK, cAMP response element-binding protein (CREB) and the immediate early gene (IEG) zif268 are essential components of a signalling cascade required for the expression of late phase LTP and of certain forms of long-term memory. We also present experiments in which we have assessed the role of these three molecules in recognition memory. We show that pharmacological blockade of MAPK/ERK phosphorylation, functional inactivation of CREB in an inducible transgenic mouse and inactivation of zif268 in a mutant mouse result in a similar deficit in long-term recognition memory. In the continuing debate about the role of LTP mechanisms in memory, these findings provide an important complement to the suggestion that synaptic changes brought about by LTP and memory consolidation and storage share, at least in part, common underlying molecular mechanisms.

Full Text

The Full Text of this article is available as a PDF (223.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. C., Dragunow M., Tate W. P. The role of immediate early genes in the stabilization of long-term potentiation. Mol Neurobiol. 1991;5(2-4):297–314. doi: 10.1007/BF02935553. [DOI] [PubMed] [Google Scholar]
  2. Abraham W. C., Mason S. E., Demmer J., Williams J. M., Richardson C. L., Tate W. P., Lawlor P. A., Dragunow M. Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience. 1993 Oct;56(3):717–727. doi: 10.1016/0306-4522(93)90369-q. [DOI] [PubMed] [Google Scholar]
  3. Athos Jaime, Impey Soren, Pineda Victor V., Chen Xi, Storm Daniel R. Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat Neurosci. 2002 Nov;5(11):1119–1120. doi: 10.1038/nn951. [DOI] [PubMed] [Google Scholar]
  4. Atkins C. M., Selcher J. C., Petraitis J. J., Trzaskos J. M., Sweatt J. D. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998 Nov;1(7):602–609. doi: 10.1038/2836. [DOI] [PubMed] [Google Scholar]
  5. Barco Angel, Alarcon Juan M., Kandel Eric R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell. 2002 Mar 8;108(5):689–703. doi: 10.1016/s0092-8674(02)00657-8. [DOI] [PubMed] [Google Scholar]
  6. Beckmann A. M., Wilce P. A. Egr transcription factors in the nervous system. Neurochem Int. 1997 Oct;31(4):477–526. doi: 10.1016/s0197-0186(96)00136-2. [DOI] [PubMed] [Google Scholar]
  7. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blum S., Moore A. N., Adams F., Dash P. K. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci. 1999 May 1;19(9):3535–3544. doi: 10.1523/JNEUROSCI.19-09-03535.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A. J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994 Oct 7;79(1):59–68. doi: 10.1016/0092-8674(94)90400-6. [DOI] [PubMed] [Google Scholar]
  10. Bozon Bruno, Davis Sabrina, Laroche Serge. Regulated transcription of the immediate-early gene Zif268: mechanisms and gene dosage-dependent function in synaptic plasticity and memory formation. Hippocampus. 2002;12(5):570–577. doi: 10.1002/hipo.10100. [DOI] [PubMed] [Google Scholar]
  11. Bramham C. R., Southard T., Sarvey J. M., Herkenham M., Brady L. S. Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication. J Comp Neurol. 1996 May 6;368(3):371–382. doi: 10.1002/(SICI)1096-9861(19960506)368:3<371::AID-CNE4>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  12. Cammarota M., Bevilaqua L. R., Ardenghi P., Paratcha G., Levi de Stein M., Izquierdo I., Medina J. H. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Brain Res Mol Brain Res. 2000 Mar 10;76(1):36–46. doi: 10.1016/s0169-328x(99)00329-0. [DOI] [PubMed] [Google Scholar]
  13. Cavallaro S., Schreurs B. G., Zhao W., D'Agata V., Alkon D. L. Gene expression profiles during long-term memory consolidation. Eur J Neurosci. 2001 May;13(9):1809–1815. doi: 10.1046/j.0953-816x.2001.01543.x. [DOI] [PubMed] [Google Scholar]
  14. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Christy B., Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8737–8741. doi: 10.1073/pnas.86.22.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Clark R. E., Zola S. M., Squire L. R. Impaired recognition memory in rats after damage to the hippocampus. J Neurosci. 2000 Dec 1;20(23):8853–8860. doi: 10.1523/JNEUROSCI.20-23-08853.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cole A. J., Saffen D. W., Baraban J. M., Worley P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989 Aug 10;340(6233):474–476. doi: 10.1038/340474a0. [DOI] [PubMed] [Google Scholar]
  18. Davis H. P., Squire L. R. Protein synthesis and memory: a review. Psychol Bull. 1984 Nov;96(3):518–559. [PubMed] [Google Scholar]
  19. Davis S., Rodger J., Hicks A., Mallet J., Laroche S. Brain structure and task-specific increase in expression of the gene encoding syntaxin 1B during learning in the rat: a potential molecular marker for learning-induced synaptic plasticity in neural networks. Eur J Neurosci. 1996 Oct;8(10):2068–2074. doi: 10.1111/j.1460-9568.1996.tb00727.x. [DOI] [PubMed] [Google Scholar]
  20. Davis S., Rodger J., Stéphan A., Hicks A., Mallet J., Laroche S. Increase in syntaxin 1B mRNA in hippocampal and cortical circuits during spatial learning reflects a mechanism of trans-synaptic plasticity involved in establishing a memory trace. Learn Mem. 1998 Sep-Oct;5(4-5):375–390. [PMC free article] [PubMed] [Google Scholar]
  21. Davis S., Vanhoutte P., Pages C., Caboche J., Laroche S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci. 2000 Jun 15;20(12):4563–4572. doi: 10.1523/JNEUROSCI.20-12-04563.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Eng H., Lund K., Campenot R. B. Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci. 1999 Jan 1;19(1):1–9. doi: 10.1523/JNEUROSCI.19-01-00001.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. French P. J., O'Connor V., Jones M. W., Davis S., Errington M. L., Voss K., Truchet B., Wotjak C., Stean T., Doyère V. Subfield-specific immediate early gene expression associated with hippocampal long-term potentiation in vivo. Eur J Neurosci. 2001 Mar;13(5):968–976. doi: 10.1046/j.0953-816x.2001.01467.x. [DOI] [PubMed] [Google Scholar]
  24. Frey U., Morris R. G. Synaptic tagging and long-term potentiation. Nature. 1997 Feb 6;385(6616):533–536. doi: 10.1038/385533a0. [DOI] [PubMed] [Google Scholar]
  25. Gashler A., Sukhatme V. P. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol. 1995;50:191–224. doi: 10.1016/s0079-6603(08)60815-6. [DOI] [PubMed] [Google Scholar]
  26. Genoux David, Haditsch Ursula, Knobloch Marlen, Michalon Aubin, Storm Daniel, Mansuy Isabelle M. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature. 2002 Aug 29;418(6901):970–975. doi: 10.1038/nature00928. [DOI] [PubMed] [Google Scholar]
  27. Grimm R., Tischmeyer W. Complex patterns of immediate early gene induction in rat brain following brightness discrimination training and pseudotraining. Behav Brain Res. 1997 Mar;84(1-2):109–116. doi: 10.1016/s0166-4328(97)83330-x. [DOI] [PubMed] [Google Scholar]
  28. Guzowski J. F., McGaugh J. L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2693–2698. doi: 10.1073/pnas.94.6.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Guzowski J. F., McNaughton B. L., Barnes C. A., Worley P. F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci. 1999 Dec;2(12):1120–1124. doi: 10.1038/16046. [DOI] [PubMed] [Google Scholar]
  30. Guzowski J. F., Setlow B., Wagner E. K., McGaugh J. L. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci. 2001 Jul 15;21(14):5089–5098. doi: 10.1523/JNEUROSCI.21-14-05089.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Génin A., Davis S., Meziane H., Doyère V., Jeromin A., Roder J., Mallet J., Laroche S. Regulated expression of the neuronal calcium sensor-1 gene during long-term potentiation in the dentate gyrus in vivo. Neuroscience. 2001;106(3):571–577. doi: 10.1016/s0306-4522(01)00301-3. [DOI] [PubMed] [Google Scholar]
  32. Hall J., Thomas K. L., Everitt B. J. Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J Neurosci. 2001 Mar 15;21(6):2186–2193. doi: 10.1523/JNEUROSCI.21-06-02186.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hall J., Thomas K. L., Everitt B. J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci. 2000 Jun;3(6):533–535. doi: 10.1038/75698. [DOI] [PubMed] [Google Scholar]
  34. Herms J., Zurmöhle U., Schlingensiepen R., Brysch W., Schlingensiepen K. H. Developmental expression of the transcription factor zif268 in rat brain. Neurosci Lett. 1994 Jan 3;165(1-2):171–174. doi: 10.1016/0304-3940(94)90737-4. [DOI] [PubMed] [Google Scholar]
  35. Hicks A., Davis S., Rodger J., Helme-Guizon A., Laroche S., Mallet J. Synapsin I and syntaxin 1B: key elements in the control of neurotransmitter release are regulated by neuronal activation and long-term potentiation in vivo. Neuroscience. 1997 Jul;79(2):329–340. doi: 10.1016/s0306-4522(96)00700-2. [DOI] [PubMed] [Google Scholar]
  36. Hipskind R. A., Baccarini M., Nordheim A. Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo. Mol Cell Biol. 1994 Sep;14(9):6219–6231. doi: 10.1128/mcb.14.9.6219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Impey S., Mark M., Villacres E. C., Poser S., Chavkin C., Storm D. R. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 1996 May;16(5):973–982. doi: 10.1016/s0896-6273(00)80120-8. [DOI] [PubMed] [Google Scholar]
  38. Impey S., Obrietan K., Storm D. R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron. 1999 May;23(1):11–14. doi: 10.1016/s0896-6273(00)80747-3. [DOI] [PubMed] [Google Scholar]
  39. Impey S., Obrietan K., Wong S. T., Poser S., Yano S., Wayman G., Deloulme J. C., Chan G., Storm D. R. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 1998 Oct;21(4):869–883. doi: 10.1016/s0896-6273(00)80602-9. [DOI] [PubMed] [Google Scholar]
  40. Impey S., Smith D. M., Obrietan K., Donahue R., Wade C., Storm D. R. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci. 1998 Nov;1(7):595–601. doi: 10.1038/2830. [DOI] [PubMed] [Google Scholar]
  41. Jones M. W., Errington M. L., French P. J., Fine A., Bliss T. V., Garel S., Charnay P., Bozon B., Laroche S., Davis S. A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci. 2001 Mar;4(3):289–296. doi: 10.1038/85138. [DOI] [PubMed] [Google Scholar]
  42. Josselyn S. A., Shi C., Carlezon W. A., Jr, Neve R. L., Nestler E. J., Davis M. Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci. 2001 Apr 1;21(7):2404–2412. doi: 10.1523/JNEUROSCI.21-07-02404.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kida Satoshi, Josselyn Sheena A., Peña de Ortiz Sandra, Kogan Jeffrey H., Chevere Itzamarie, Masushige Shoichi, Silva Alcino J. CREB required for the stability of new and reactivated fear memories. Nat Neurosci. 2002 Apr;5(4):348–355. doi: 10.1038/nn819. [DOI] [PubMed] [Google Scholar]
  44. Krug M., Lössner B., Ott T. Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res Bull. 1984 Jul;13(1):39–42. doi: 10.1016/0361-9230(84)90005-4. [DOI] [PubMed] [Google Scholar]
  45. Lamprecht R., Hazvi S., Dudai Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci. 1997 Nov 1;17(21):8443–8450. doi: 10.1523/JNEUROSCI.17-21-08443.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lemaire P., Revelant O., Bravo R., Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4691–4695. doi: 10.1073/pnas.85.13.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Link W., Konietzko U., Kauselmann G., Krug M., Schwanke B., Frey U., Kuhl D. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5734–5738. doi: 10.1073/pnas.92.12.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lonze Bonnie E., Ginty David D. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002 Aug 15;35(4):605–623. doi: 10.1016/s0896-6273(02)00828-0. [DOI] [PubMed] [Google Scholar]
  49. Lyford G. L., Yamagata K., Kaufmann W. E., Barnes C. A., Sanders L. K., Copeland N. G., Gilbert D. J., Jenkins N. A., Lanahan A. A., Worley P. F. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron. 1995 Feb;14(2):433–445. doi: 10.1016/0896-6273(95)90299-6. [DOI] [PubMed] [Google Scholar]
  50. Mack K., Day M., Milbrandt J., Gottlieb D. I. Localization of the NGFI-A protein in the rat brain. Brain Res Mol Brain Res. 1990 Jul;8(2):177–180. doi: 10.1016/0169-328x(90)90062-i. [DOI] [PubMed] [Google Scholar]
  51. Malkani S., Rosen J. B. Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats. Neuroscience. 2000;97(4):693–702. doi: 10.1016/s0306-4522(00)00058-0. [DOI] [PubMed] [Google Scholar]
  52. Malleret G., Haditsch U., Genoux D., Jones M. W., Bliss T. V., Vanhoose A. M., Weitlauf C., Kandel E. R., Winder D. G., Mansuy I. M. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001 Mar 9;104(5):675–686. doi: 10.1016/s0092-8674(01)00264-1. [DOI] [PubMed] [Google Scholar]
  53. Marais R., Wynne J., Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993 Apr 23;73(2):381–393. doi: 10.1016/0092-8674(93)90237-k. [DOI] [PubMed] [Google Scholar]
  54. Meiri N., Rosenblum K. Lateral ventricle injection of the protein synthesis inhibitor anisomycin impairs long-term memory in a spatial memory task. Brain Res. 1998 Apr 6;789(1):48–55. doi: 10.1016/s0006-8993(97)01528-x. [DOI] [PubMed] [Google Scholar]
  55. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987 Nov 6;238(4828):797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  56. Nguyen P. V., Abel T., Kandel E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994 Aug 19;265(5175):1104–1107. doi: 10.1126/science.8066450. [DOI] [PubMed] [Google Scholar]
  57. Nikolaev E., Werka T., Kaczmarek L. C-fos protooncogene expression in rat brain after long-term training of two-way active avoidance reaction. Behav Brain Res. 1992 May 8;48(1):91–94. doi: 10.1016/s0166-4328(05)80143-3. [DOI] [PubMed] [Google Scholar]
  58. O'Donovan K. J., Tourtellotte W. G., Millbrandt J., Baraban J. M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999 Apr;22(4):167–173. doi: 10.1016/s0166-2236(98)01343-5. [DOI] [PubMed] [Google Scholar]
  59. Okuno H., Miyashita Y. Expression of the transcription factor Zif268 in the temporal cortex of monkeys during visual paired associate learning. Eur J Neurosci. 1996 Oct;8(10):2118–2128. doi: 10.1111/j.1460-9568.1996.tb00733.x. [DOI] [PubMed] [Google Scholar]
  60. Otani S., Abraham W. C. Inhibition of protein synthesis in the dentate gyrus, but not the entorhinal cortex, blocks maintenance of long-term potentiation in rats. Neurosci Lett. 1989 Nov 20;106(1-2):175–180. doi: 10.1016/0304-3940(89)90222-x. [DOI] [PubMed] [Google Scholar]
  61. Patterson S. L., Pittenger C., Morozov A., Martin K. C., Scanlin H., Drake C., Kandel E. R. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron. 2001 Oct 11;32(1):123–140. doi: 10.1016/s0896-6273(01)00443-3. [DOI] [PubMed] [Google Scholar]
  62. Pittenger Christopher, Huang Yan You, Paletzki Ronald F., Bourtchouladze Roussoudan, Scanlin Heather, Vronskaya Svetlana, Kandel Eric R. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron. 2002 Apr 25;34(3):447–462. doi: 10.1016/s0896-6273(02)00684-0. [DOI] [PubMed] [Google Scholar]
  63. Richardson C. L., Tate W. P., Mason S. E., Lawlor P. A., Dragunow M., Abraham W. C. Correlation between the induction of an immediate early gene, zif/268, and long-term potentiation in the dentate gyrus. Brain Res. 1992 May 15;580(1-2):147–154. doi: 10.1016/0006-8993(92)90938-6. [DOI] [PubMed] [Google Scholar]
  64. Roberson E. D., English J. D., Adams J. P., Selcher J. C., Kondratick C., Sweatt J. D. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci. 1999 Jun 1;19(11):4337–4348. doi: 10.1523/JNEUROSCI.19-11-04337.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rosenblum K., Futter M., Jones M., Hulme E. C., Bliss T. V. ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci. 2000 Feb 1;20(3):977–985. doi: 10.1523/JNEUROSCI.20-03-00977.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Schafe G. E., Atkins C. M., Swank M. W., Bauer E. P., Sweatt J. D., LeDoux J. E. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci. 2000 Nov 1;20(21):8177–8187. doi: 10.1523/JNEUROSCI.20-21-08177.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Selcher J. C., Atkins C. M., Trzaskos J. M., Paylor R., Sweatt J. D. A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem. 1999 Sep-Oct;6(5):478–490. doi: 10.1101/lm.6.5.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Sgambato V., Pagès C., Rogard M., Besson M. J., Caboche J. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci. 1998 Nov 1;18(21):8814–8825. doi: 10.1523/JNEUROSCI.18-21-08814.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Smirnova T., Laroche S., Errington M. L., Hicks A. A., Bliss T. V., Mallet J. Transsynaptic expression of a presynaptic glutamate receptor during hippocampal long-term potentiation. Science. 1993 Oct 15;262(5132):433–436. doi: 10.1126/science.8105538. [DOI] [PubMed] [Google Scholar]
  70. Soderling T. R., Derkach V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000 Feb;23(2):75–80. doi: 10.1016/s0166-2236(99)01490-3. [DOI] [PubMed] [Google Scholar]
  71. Sukhatme V. P., Cao X. M., Chang L. C., Tsai-Morris C. H., Stamenkovich D., Ferreira P. C., Cohen D. R., Edwards S. A., Shows T. B., Curran T. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988 Apr 8;53(1):37–43. doi: 10.1016/0092-8674(88)90485-0. [DOI] [PubMed] [Google Scholar]
  72. Sweatt J. D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001 Jan;76(1):1–10. doi: 10.1046/j.1471-4159.2001.00054.x. [DOI] [PubMed] [Google Scholar]
  73. Swirnoff A. H., Milbrandt J. DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol Cell Biol. 1995 Apr;15(4):2275–2287. doi: 10.1128/mcb.15.4.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Thomas K. L., Davis S., Hunt S. P., Laroche S. Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. Learn Mem. 1996 Sep-Oct;3(2-3):197–208. doi: 10.1101/lm.3.2-3.197. [DOI] [PubMed] [Google Scholar]
  75. Thomas K. L., Laroche S., Errington M. L., Bliss T. V., Hunt S. P. Spatial and temporal changes in signal transduction pathways during LTP. Neuron. 1994 Sep;13(3):737–745. doi: 10.1016/0896-6273(94)90040-x. [DOI] [PubMed] [Google Scholar]
  76. Tischmeyer W., Grimm R. Activation of immediate early genes and memory formation. Cell Mol Life Sci. 1999 Apr;55(4):564–574. doi: 10.1007/s000180050315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Topilko P., Schneider-Maunoury S., Levi G., Trembleau A., Gourdji D., Driancourt M. A., Rao C. V., Charnay P. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol Endocrinol. 1998 Jan;12(1):107–122. doi: 10.1210/mend.12.1.0049. [DOI] [PubMed] [Google Scholar]
  78. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996 Apr;8(2):205–215. doi: 10.1016/s0955-0674(96)80067-6. [DOI] [PubMed] [Google Scholar]
  79. Vanhoutte P., Barnier J. V., Guibert B., Pagès C., Besson M. J., Hipskind R. A., Caboche J. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol. 1999 Jan;19(1):136–146. doi: 10.1128/mcb.19.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Waltereit R., Dammermann B., Wulff P., Scafidi J., Staubli U., Kauselmann G., Bundman M., Kuhl D. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci. 2001 Aug 1;21(15):5484–5493. doi: 10.1523/JNEUROSCI.21-15-05484.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Wasylyk B., Hagman J., Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci. 1998 Jun;23(6):213–216. doi: 10.1016/s0968-0004(98)01211-0. [DOI] [PubMed] [Google Scholar]
  82. Watson M. A., Milbrandt J. Expression of the nerve growth factor-regulated NGFI-A and NGFI-B genes in the developing rat. Development. 1990 Sep;110(1):173–183. doi: 10.1242/dev.110.1.173. [DOI] [PubMed] [Google Scholar]
  83. Williams J. M., Beckmann A. M., Mason-Parker S. E., Abraham W. C., Wilce P. A., Tate W. P. Sequential increase in Egr-1 and AP-1 DNA binding activity in the dentate gyrus following the induction of long-term potentiation. Brain Res Mol Brain Res. 2000 May 5;77(2):258–266. doi: 10.1016/s0169-328x(00)00061-9. [DOI] [PubMed] [Google Scholar]
  84. Wisden W., Errington M. L., Williams S., Dunnett S. B., Waters C., Hitchcock D., Evan G., Bliss T. V., Hunt S. P. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron. 1990 Apr;4(4):603–614. doi: 10.1016/0896-6273(90)90118-y. [DOI] [PubMed] [Google Scholar]
  85. Worley P. F., Bhat R. V., Baraban J. M., Erickson C. A., McNaughton B. L., Barnes C. A. Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J Neurosci. 1993 Nov;13(11):4776–4786. doi: 10.1523/JNEUROSCI.13-11-04776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Worley P. F., Christy B. A., Nakabeppu Y., Bhat R. V., Cole A. J., Baraban J. M. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5106–5110. doi: 10.1073/pnas.88.12.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Zhao W., Meiri N., Xu H., Cavallaro S., Quattrone A., Zhang L., Alkon D. L. Spatial learning induced changes in expression of the ryanodine type II receptor in the rat hippocampus. FASEB J. 2000 Feb;14(2):290–300. doi: 10.1096/fasebj.14.2.290. [DOI] [PubMed] [Google Scholar]
  88. Zola S. M., Squire L. R., Teng E., Stefanacci L., Buffalo E. A., Clark R. E. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J Neurosci. 2000 Jan 1;20(1):451–463. doi: 10.1523/JNEUROSCI.20-01-00451.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES