Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Apr 29;358(1432):745–748. doi: 10.1098/rstb.2002.1254

Structural changes at dendritic spine synapses during long-term potentiation.

Kristen M Harris 1, John C Fiala 1, Linnaea Ostroff 1
PMCID: PMC1693146  PMID: 12740121

Abstract

Two key hypotheses about the structural basis of long-term potentiation (LTP) are evaluated in light of new findings from immature rat hippocampal slices. First, it is shown why dendritic spines do not split during LTP. Instead a small number of spine-like dendritic protrusions may emerge to enhance connectivity with potentiated axons. These 'same dendrite multiple synapse boutons' provide less than a 3% increase in connectivity and do not account for all of LTP or memory, as they do not accumulate during maturation. Second, polyribosomes in dendritic spines served to identify which of the existing synapses enlarged to sustain more than a 30% increase in synaptic strength. Thus, both enhanced connectivity and enlarged synapses result during LTP, with synapse enlargement being the greater effect.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fiala John C., Allwardt Brenda, Harris Kristen M. Dendritic spines do not split during hippocampal LTP or maturation. Nat Neurosci. 2002 Apr;5(4):297–298. doi: 10.1038/nn830. [DOI] [PubMed] [Google Scholar]
  2. Frey U., Morris R. G. Synaptic tagging and long-term potentiation. Nature. 1997 Feb 6;385(6616):533–536. doi: 10.1038/385533a0. [DOI] [PubMed] [Google Scholar]
  3. Harris K. M., Kater S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 1994;17:341–371. doi: 10.1146/annurev.ne.17.030194.002013. [DOI] [PubMed] [Google Scholar]
  4. Harris K. M., Stevens J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1989 Aug;9(8):2982–2997. doi: 10.1523/JNEUROSCI.09-08-02982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lüscher C., Nicoll R. A., Malenka R. C., Muller D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci. 2000 Jun;3(6):545–550. doi: 10.1038/75714. [DOI] [PubMed] [Google Scholar]
  6. Nguyen P. V., Abel T., Kandel E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994 Aug 19;265(5175):1104–1107. doi: 10.1126/science.8066450. [DOI] [PubMed] [Google Scholar]
  7. Ostroff Linnaea E., Fiala John C., Allwardt Brenda, Harris Kristen M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron. 2002 Aug 1;35(3):535–545. doi: 10.1016/s0896-6273(02)00785-7. [DOI] [PubMed] [Google Scholar]
  8. Sorra K. E., Fiala J. C., Harris K. M. Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J Comp Neurol. 1998 Aug 24;398(2):225–240. [PubMed] [Google Scholar]
  9. Sorra K. E., Harris K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J Neurosci. 1993 Sep;13(9):3736–3748. doi: 10.1523/JNEUROSCI.13-09-03736.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sorra K. E., Harris K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J Neurosci. 1998 Jan 15;18(2):658–671. doi: 10.1523/JNEUROSCI.18-02-00658.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Steward O., Schuman E. M. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001;24:299–325. doi: 10.1146/annurev.neuro.24.1.299. [DOI] [PubMed] [Google Scholar]
  12. Steward O., Worley P. F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron. 2001 Apr;30(1):227–240. doi: 10.1016/s0896-6273(01)00275-6. [DOI] [PubMed] [Google Scholar]
  13. Toni N., Buchs P. A., Nikonenko I., Bron C. R., Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature. 1999 Nov 25;402(6760):421–425. doi: 10.1038/46574. [DOI] [PubMed] [Google Scholar]
  14. Yuste R., Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci. 2001;24:1071–1089. doi: 10.1146/annurev.neuro.24.1.1071. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES