Abstract
We have used a glutamate-specific dialysis electrode to obtain real-time measurements of changes in the concentration of glutamate in the extracellular space of the hippocampus during low-frequency stimulation and following the induction of long-term potentiation (LTP). In the dentate gyrus, stimulation of the perforant path at 2 Hz for 2 min produced a transient increase in glutamate current relative to the basal value at control rates of stimulation (0.033 Hz). This activity-dependent glutamate current was significantly enhanced 35 and 90 min after the induction of LTP. The maximal 2 Hz signal was obtained during post-tetanic potentiation (PTP). There was also a more gradual increase in the basal level of extracellular glutamate following the induction of LTP. Both the basal and activity-dependent increases in glutamate current induced by tetanic stimulation were blocked by local infusion of the N-methyl-D-aspartate receptor antagonist D-APV. In areas CA1 and CA3 we were unable to detect a 2 Hz glutamate signal either before or after the induction of LTP, possibly owing to a more avid uptake of glutamate in the pyramidal cell fields. These results demonstrate that LTP in the dentate gyrus is associated with a greater concentration of extracellular glutamate following activation of potentiated synapses, either because potentiated synapses release more transmitter per impulse, or because of reduced uptake by glutamate transporters. We present arguments favouring increased release rather than decreased uptake.
Full Text
The Full Text of this article is available as a PDF (366.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albery W. J., Bartlett P. N., Cass A. E. Amperometric enzyme electrodes. Philos Trans R Soc Lond B Biol Sci. 1987 Aug 28;316(1176):107–119. doi: 10.1098/rstb.1987.0021. [DOI] [PubMed] [Google Scholar]
- Aniksztejn L., Roisin M. P., Amsellem R., Ben-Ari Y. Long-term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience. 1989;28(2):387–392. doi: 10.1016/0306-4522(89)90185-1. [DOI] [PubMed] [Google Scholar]
- Bliss T. V., Douglas R. M., Errington M. L., Lynch M. A. Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J Physiol. 1986 Aug;377:391–408. doi: 10.1113/jphysiol.1986.sp016193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bliss T. V., Errington M. L., Lynch M. A., Williams J. H. Presynaptic mechanisms in hippocampal long-term potentiation. Cold Spring Harb Symp Quant Biol. 1990;55:119–129. doi: 10.1101/sqb.1990.055.01.015. [DOI] [PubMed] [Google Scholar]
- Collingridge G. L., Kehl S. J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983 Jan;334:33–46. doi: 10.1113/jphysiol.1983.sp014478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curras M. C., Dingledine R. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Mol Pharmacol. 1992 Mar;41(3):520–526. [PubMed] [Google Scholar]
- Danbolt N. C. Glutamate uptake. Prog Neurobiol. 2001 Sep;65(1):1–105. doi: 10.1016/s0301-0082(00)00067-8. [DOI] [PubMed] [Google Scholar]
- Diamond J. S., Bergles D. E., Jahr C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron. 1998 Aug;21(2):425–433. doi: 10.1016/s0896-6273(00)80551-6. [DOI] [PubMed] [Google Scholar]
- Dolphin A. C., Errington M. L., Bliss T. V. Long-term potentiation of the perforant path in vivo is associated with increased glutamate release. Nature. 1982 Jun 10;297(5866):496–498. doi: 10.1038/297496a0. [DOI] [PubMed] [Google Scholar]
- Douglas R. M., McNaughton B. L., Goddard G. V. Commissural inhibition and facilitation of granule cell discharge in fascia dentata. J Comp Neurol. 1983 Sep 20;219(3):285–294. doi: 10.1002/cne.902190304. [DOI] [PubMed] [Google Scholar]
- Errington M. L., Lynch M. A., Bliss T. V. Long-term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(-)aminophosphonovalerate. Neuroscience. 1987 Jan;20(1):279–284. doi: 10.1016/0306-4522(87)90019-4. [DOI] [PubMed] [Google Scholar]
- Gundersen V., Chaudhry F. A., Bjaalie J. G., Fonnum F., Ottersen O. P., Storm-Mathisen J. Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci. 1998 Aug 15;18(16):6059–6070. doi: 10.1523/JNEUROSCI.18-16-06059.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jay T. M., Zilkha E., Obrenovitch T. P. Long-term potentiation in the dentate gyrus is not linked to increased extracellular glutamate concentration. J Neurophysiol. 1999 Apr;81(4):1741–1748. doi: 10.1152/jn.1999.81.4.1741. [DOI] [PubMed] [Google Scholar]
- Kauer J. A., Malenka R. C., Nicoll R. A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1988 Dec;1(10):911–917. doi: 10.1016/0896-6273(88)90148-1. [DOI] [PubMed] [Google Scholar]
- Lerma J., Herranz A. S., Herreras O., Abraira V., Martín del Río R. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res. 1986 Oct 1;384(1):145–155. doi: 10.1016/0006-8993(86)91230-8. [DOI] [PubMed] [Google Scholar]
- Levenson Jonathan, Weeber Edwin, Selcher Joel C., Kategaya Lorna S., Sweatt J. David, Eskin Arnold. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci. 2002 Feb;5(2):155–161. doi: 10.1038/nn791. [DOI] [PubMed] [Google Scholar]
- Lüscher C., Malenka R. C., Nicoll R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998 Aug;21(2):435–441. doi: 10.1016/s0896-6273(00)80552-8. [DOI] [PubMed] [Google Scholar]
- McNaughton B. L. Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol. 1982 Mar;324:249–262. doi: 10.1113/jphysiol.1982.sp014110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller D., Lynch G. Long-term potentiation differentially affects two components of synaptic responses in hippocampus. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9346–9350. doi: 10.1073/pnas.85.23.9346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D., Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990 Nov;11(11):462–468. doi: 10.1016/0165-6147(90)90129-v. [DOI] [PubMed] [Google Scholar]
- Obrenovitch T. P., Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol. 1997 Jan;51(1):39–87. doi: 10.1016/s0301-0082(96)00049-4. [DOI] [PubMed] [Google Scholar]
- Shiraishi M., Kamiyama Y., Hüttemeier P. C., Benveniste H. Extracellular glutamate and dopamine measured by microdialysis in the rat striatum during blockade of synaptic transmission in anesthetized and awake rats. Brain Res. 1997 Jun 13;759(2):221–227. doi: 10.1016/s0006-8993(97)00258-8. [DOI] [PubMed] [Google Scholar]
- Skrede K. K., Malthe-Sørenssen D. Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: a biochemical correlate to long-lasting synaptic potentiation. Brain Res. 1981 Mar 16;208(2):436–441. doi: 10.1016/0006-8993(81)90573-4. [DOI] [PubMed] [Google Scholar]
- Taxt T., Storm-Mathisen J. Uptake of D-aspartate and L-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with gamma-aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience. 1984 Jan;11(1):79–100. doi: 10.1016/0306-4522(84)90215-x. [DOI] [PubMed] [Google Scholar]
- Walker M. C., Galley P. T., Errington M. L., Shorvon S. D., Jefferys J. G. Ascorbate and glutamate release in the rat hippocampus after perforant path stimulation: a "dialysis electrode" study. J Neurochem. 1995 Aug;65(2):725–731. doi: 10.1046/j.1471-4159.1995.65020725.x. [DOI] [PubMed] [Google Scholar]
- Wu L. G., Saggau P. Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J Neurosci. 1994 Feb;14(2):645–654. doi: 10.1523/JNEUROSCI.14-02-00645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
