Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Apr 29;358(1432):797–804. doi: 10.1098/rstb.2002.1245

Inducible molecular switches for the study of long-term potentiation.

Gaël Hédou 1, Isabelle M Mansuy 1
PMCID: PMC1693167  PMID: 12740126

Abstract

This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene 'knock-out' technology was initially exploited to disrupt the Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII. Further to gene recombination, regulated gene expression using the tetracycline-controlled transactivator and reverse tetracycline-controlled transactivator systems, a powerful new means for modulating the activity of specific molecules, has been applied to CaMKIIalpha and the opposing protein phosphatase calcineurin. Together with electro-physiological and behavioural evaluation of the engineered mutant animals, these genetic methodologies have helped gain insight into the molecular mechanisms of plasticity and memory. Further technical developments are, however, awaited for an even higher level of finesse.

Full Text

The Full Text of this article is available as a PDF (984.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. E., Hawkins R. D., Osman M., Kandel E. R., Mayford M. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 1995 Jun 16;81(6):905–915. doi: 10.1016/0092-8674(95)90010-1. [DOI] [PubMed] [Google Scholar]
  2. Baron U., Schnappinger D., Helbl V., Gossen M., Hillen W., Bujard H. Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1013–1018. doi: 10.1073/pnas.96.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bejar Rafael, Yasuda Rie, Krugers Harmen, Hood Kristin, Mayford Mark. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory. J Neurosci. 2002 Jul 1;22(13):5719–5726. doi: 10.1523/JNEUROSCI.22-13-05719.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  5. Bliss T. V., Gardner-Medwin A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):357–374. doi: 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elgersma Ype, Fedorov Nikolai B., Ikonen Sami, Choi Esther S., Elgersma Minetta, Carvalho Ofelia M., Giese Karl Peter, Silva Alcino J. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron. 2002 Oct 24;36(3):493–505. doi: 10.1016/s0896-6273(02)01007-3. [DOI] [PubMed] [Google Scholar]
  8. Frankland P. W., O'Brien C., Ohno M., Kirkwood A., Silva A. J. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature. 2001 May 17;411(6835):309–313. doi: 10.1038/35077089. [DOI] [PubMed] [Google Scholar]
  9. Furth P. A., St Onge L., Böger H., Gruss P., Gossen M., Kistner A., Bujard H., Hennighausen L. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9302–9306. doi: 10.1073/pnas.91.20.9302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Genoux David, Haditsch Ursula, Knobloch Marlen, Michalon Aubin, Storm Daniel, Mansuy Isabelle M. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature. 2002 Aug 29;418(6901):970–975. doi: 10.1038/nature00928. [DOI] [PubMed] [Google Scholar]
  11. Gerlai R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 1996 May;19(5):177–181. doi: 10.1016/s0166-2236(96)20020-7. [DOI] [PubMed] [Google Scholar]
  12. Gerlai R. Targeting genes and proteins in the analysis of learning and memory: caveats and future directions. Rev Neurosci. 2000;11(1):15–26. doi: 10.1515/revneuro.2000.11.1.15. [DOI] [PubMed] [Google Scholar]
  13. Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. doi: 10.1126/science.279.5352.870. [DOI] [PubMed] [Google Scholar]
  14. Gingrich J. A., Hen R. The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice. Curr Opin Neurobiol. 2000 Feb;10(1):146–152. doi: 10.1016/s0959-4388(99)00061-6. [DOI] [PubMed] [Google Scholar]
  15. Glazewski S., Chen C. M., Silva A., Fox K. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science. 1996 Apr 19;272(5260):421–423. doi: 10.1126/science.272.5260.421. [DOI] [PubMed] [Google Scholar]
  16. Gordon J. A., Cioffi D., Silva A. J., Stryker M. P. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice. Neuron. 1996 Sep;17(3):491–499. doi: 10.1016/s0896-6273(00)80181-6. [DOI] [PubMed] [Google Scholar]
  17. Gossen M., Bonin A. L., Freundlieb S., Bujard H. Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol. 1994 Oct;5(5):516–520. doi: 10.1016/0958-1669(94)90067-1. [DOI] [PubMed] [Google Scholar]
  18. Gossen M., Freundlieb S., Bender G., Müller G., Hillen W., Bujard H. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995 Jun 23;268(5218):1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
  19. Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
  20. Hinds H. L., Tonegawa S., Malinow R. CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn Mem. 1998 Sep-Oct;5(4-5):344–354. [PMC free article] [PubMed] [Google Scholar]
  21. Indra A. K., Warot X., Brocard J., Bornert J. M., Xiao J. H., Chambon P., Metzger D. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 1999 Nov 15;27(22):4324–4327. doi: 10.1093/nar/27.22.4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lamartina Stefania, Roscilli Giuseppe, Rinaudo Cira Daniela, Sporeno Elisabetta, Silvi Luisa, Hillen Wolfgang, Bujard Hermann, Cortese Riccardo, Ciliberto Gennaro, Toniatti Carlo. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther. 2002 Jan 20;13(2):199–210. doi: 10.1089/10430340252769734. [DOI] [PubMed] [Google Scholar]
  23. Lisman J. E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A. 1985 May;82(9):3055–3057. doi: 10.1073/pnas.82.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9574–9578. doi: 10.1073/pnas.86.23.9574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lisman J., Schulman H., Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002 Mar;3(3):175–190. doi: 10.1038/nrn753. [DOI] [PubMed] [Google Scholar]
  26. Lisman John. Long-term potentiation: outstanding questions and attempted synthesis. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):829–842. doi: 10.1098/rstb.2002.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lynch G. S., Dunwiddie T., Gribkoff V. Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature. 1977 Apr 21;266(5604):737–739. doi: 10.1038/266737a0. [DOI] [PubMed] [Google Scholar]
  28. Malenka R. C., Nicoll R. A. Long-term potentiation--a decade of progress? Science. 1999 Sep 17;285(5435):1870–1874. doi: 10.1126/science.285.5435.1870. [DOI] [PubMed] [Google Scholar]
  29. Malleret G., Haditsch U., Genoux D., Jones M. W., Bliss T. V., Vanhoose A. M., Weitlauf C., Kandel E. R., Winder D. G., Mansuy I. M. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell. 2001 Mar 9;104(5):675–686. doi: 10.1016/s0092-8674(01)00264-1. [DOI] [PubMed] [Google Scholar]
  30. Mansuy I. M., Mayford M., Jacob B., Kandel E. R., Bach M. E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell. 1998 Jan 9;92(1):39–49. doi: 10.1016/s0092-8674(00)80897-1. [DOI] [PubMed] [Google Scholar]
  31. Mansuy I. M., Winder D. G., Moallem T. M., Osman M., Mayford M., Hawkins R. D., Kandel E. R. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron. 1998 Aug;21(2):257–265. doi: 10.1016/s0896-6273(00)80533-4. [DOI] [PubMed] [Google Scholar]
  32. Martin S. J., Grimwood P. D., Morris R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711. doi: 10.1146/annurev.neuro.23.1.649. [DOI] [PubMed] [Google Scholar]
  33. Mayford M., Bach M. E., Huang Y. Y., Wang L., Hawkins R. D., Kandel E. R. Control of memory formation through regulated expression of a CaMKII transgene. Science. 1996 Dec 6;274(5293):1678–1683. doi: 10.1126/science.274.5293.1678. [DOI] [PubMed] [Google Scholar]
  34. Mayford M., Wang J., Kandel E. R., O'Dell T. J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell. 1995 Jun 16;81(6):891–904. doi: 10.1016/0092-8674(95)90009-8. [DOI] [PubMed] [Google Scholar]
  35. Moser S., Rimann M., Fux C., Schlatter S., Bailey J. E., Fussenegger M. Dual-regulated expression technology: a new era in the adjustment of heterologous gene expression in mammalian cells. J Gene Med. 2001 Nov-Dec;3(6):529–549. doi: 10.1002/jgm.219. [DOI] [PubMed] [Google Scholar]
  36. Nakazawa Kazu, Quirk Michael C., Chitwood Raymond A., Watanabe Masahiko, Yeckel Mark F., Sun Linus D., Kato Akira, Carr Candice A., Johnston Daniel, Wilson Matthew A. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002 May 30;297(5579):211–218. doi: 10.1126/science.1071795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ohno M., Frankland P. W., Chen A. P., Costa R. M., Silva A. J. Inducible, pharmacogenetic approaches to the study of learning and memory. Nat Neurosci. 2001 Dec;4(12):1238–1243. doi: 10.1038/nn771. [DOI] [PubMed] [Google Scholar]
  38. Ohno Masuo, Frankland Paul W., Silva Alcino J. A pharmacogenetic inducible approach to the study of NMDA/alphaCaMKII signaling in synaptic plasticity. Curr Biol. 2002 Apr 16;12(8):654–656. doi: 10.1016/s0960-9822(02)00767-4. [DOI] [PubMed] [Google Scholar]
  39. Ouyang Y., Kantor D., Harris K. M., Schuman E. M., Kennedy M. B. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci. 1997 Jul 15;17(14):5416–5427. doi: 10.1523/JNEUROSCI.17-14-05416.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Salucci V., Scarito A., Aurisicchio L., Lamartina S., Nicolaus G., Giampaoli S., Gonzalez-Paz O., Toniatti C., Bujard H., Hillen W. Tight control of gene expression by a helper-dependent adenovirus vector carrying the rtTA2(s)-M2 tetracycline transactivator and repressor system. Gene Ther. 2002 Nov;9(21):1415–1421. doi: 10.1038/sj.gt.3301813. [DOI] [PubMed] [Google Scholar]
  41. Shimizu E., Tang Y. P., Rampon C., Tsien J. Z. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science. 2000 Nov 10;290(5494):1170–1174. doi: 10.1126/science.290.5494.1170. [DOI] [PubMed] [Google Scholar]
  42. Silva A. J., Paylor R., Wehner J. M., Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992 Jul 10;257(5067):206–211. doi: 10.1126/science.1321493. [DOI] [PubMed] [Google Scholar]
  43. Silva A. J., Stevens C. F., Tonegawa S., Wang Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science. 1992 Jul 10;257(5067):201–206. doi: 10.1126/science.1378648. [DOI] [PubMed] [Google Scholar]
  44. Staubli U., Lynch G. Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz stimulation. Brain Res. 1990 Apr 9;513(1):113–118. doi: 10.1016/0006-8993(90)91096-y. [DOI] [PubMed] [Google Scholar]
  45. Tonegawa S., Li Y., Erzurumlu R. S., Jhaveri S., Chen C., Goda Y., Paylor R., Silva A. J., Kim J. J., Wehner J. M. The gene knockout technology for the analysis of learning and memory, and neural development. Prog Brain Res. 1995;105:3–14. doi: 10.1016/s0079-6123(08)63279-3. [DOI] [PubMed] [Google Scholar]
  46. Tonegawa Susumu, Nakazawa Kazu, Wilson Matthew A. Genetic neuroscience of mammalian learning and memory. Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):787–795. doi: 10.1098/rstb.2002.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsien J. Z., Chen D. F., Gerber D., Tom C., Mercer E. H., Anderson D. J., Mayford M., Kandel E. R., Tonegawa S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996 Dec 27;87(7):1317–1326. doi: 10.1016/s0092-8674(00)81826-7. [DOI] [PubMed] [Google Scholar]
  48. Tsien J. Z., Huerta P. T., Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996 Dec 27;87(7):1327–1338. doi: 10.1016/s0092-8674(00)81827-9. [DOI] [PubMed] [Google Scholar]
  49. Urlinger S., Baron U., Thellmann M., Hasan M. T., Bujard H., Hillen W. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7963–7968. doi: 10.1073/pnas.130192197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wang J. H., Kelly P. T. The balance between postsynaptic Ca(2+)-dependent protein kinase and phosphatase activities controlling synaptic strength. Learn Mem. 1996 Sep-Oct;3(2-3):170–181. doi: 10.1101/lm.3.2-3.170. [DOI] [PubMed] [Google Scholar]
  51. Winder D. G., Mansuy I. M., Osman M., Moallem T. M., Kandel E. R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell. 1998 Jan 9;92(1):25–37. doi: 10.1016/s0092-8674(00)80896-x. [DOI] [PubMed] [Google Scholar]
  52. Zeng H., Chattarji S., Barbarosie M., Rondi-Reig L., Philpot B. D., Miyakawa T., Bear M. F., Tonegawa S. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell. 2001 Nov 30;107(5):617–629. doi: 10.1016/s0092-8674(01)00585-2. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES