Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 May 29;358(1433):847–861. doi: 10.1098/rstb.2003.1265

Biosynthesis and degradation of mammalian glycosphingolipids.

Konrad Sandhoff 1, Thomas Kolter 1
PMCID: PMC1693173  PMID: 12803917

Abstract

Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin.

Full Text

The Full Text of this article is available as a PDF (414.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berent S. L., Radin N. S. Mechanism of activation of glucocerebrosidase by co-beta-glucosidase (glucosidase activator protein). Biochim Biophys Acta. 1981 Jun 23;664(3):572–582. doi: 10.1016/0005-2760(81)90134-x. [DOI] [PubMed] [Google Scholar]
  2. Bieberich E., Yu R. K. Multi-enzyme kinetic analysis of glycolipid biosynthesis. Biochim Biophys Acta. 1999 Jun 15;1432(1):113–124. doi: 10.1016/s0167-4838(99)00085-0. [DOI] [PubMed] [Google Scholar]
  3. Bradová V., Smíd F., Ulrich-Bott B., Roggendorf W., Paton B. C., Harzer K. Prosaposin deficiency: further characterization of the sphingolipid activator protein-deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet. 1993 Sep;92(2):143–152. doi: 10.1007/BF00219682. [DOI] [PubMed] [Google Scholar]
  4. Braun P. E., Snell E. E. Biosynthesis of sphingolipid bases. II. Keto intermediates in synthesis of sphingosine and dihydrosphingosine by cell-free extracts of Hansenula ciferri. J Biol Chem. 1968 Jul 25;243(14):3775–3783. [PubMed] [Google Scholar]
  5. Brotherus J., Renkonen O. Subcellular distributions of lipids in cultured BHK cells: evidence for the enrichment of lysobisphosphatidic acid and neutral lipids in lysosomes. J Lipid Res. 1977 Mar;18(2):191–202. [PubMed] [Google Scholar]
  6. Burkhardt J. K., Hüttler S., Klein A., Möbius W., Habermann A., Griffiths G., Sandhoff K. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur J Cell Biol. 1997 May;73(1):10–18. [PubMed] [Google Scholar]
  7. Chiavegatto S., Sun J., Nelson R. J., Schnaar R. L. A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol. 2000 Dec;166(2):227–234. doi: 10.1006/exnr.2000.7504. [DOI] [PubMed] [Google Scholar]
  8. Chojnacki T., Dallner G. The biological role of dolichol. Biochem J. 1988 Apr 1;251(1):1–9. doi: 10.1042/bj2510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christomanou H., Aignesberger A., Linke R. P. Immunochemical characterization of two activator proteins stimulating enzymic sphingomyelin degradation in vitro. Absence of one of them in a human Gaucher disease variant. Biol Chem Hoppe Seyler. 1986 Sep;367(9):879–890. doi: 10.1515/bchm3.1986.367.2.879. [DOI] [PubMed] [Google Scholar]
  10. Coetzee T., Fujita N., Dupree J., Shi R., Blight A., Suzuki K., Suzuki K., Popko B. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell. 1996 Jul 26;86(2):209–219. doi: 10.1016/s0092-8674(00)80093-8. [DOI] [PubMed] [Google Scholar]
  11. Conzelmann E., Burg J., Stephan G., Sandhoff K. Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2. Eur J Biochem. 1982 Apr 1;123(2):455–464. doi: 10.1111/j.1432-1033.1982.tb19789.x. [DOI] [PubMed] [Google Scholar]
  12. Conzelmann E., Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Conzelmann E., Sandhoff K. Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. Hoppe Seylers Z Physiol Chem. 1979 Dec;360(12):1837–1849. doi: 10.1515/bchm2.1979.360.2.1837. [DOI] [PubMed] [Google Scholar]
  14. Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
  15. Dickson R. C. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem. 1998;67:27–48. doi: 10.1146/annurev.biochem.67.1.27. [DOI] [PubMed] [Google Scholar]
  16. Doering T., Proia R. L., Sandhoff K. Accumulation of protein-bound epidermal glucosylceramides in beta-glucocerebrosidase deficient type 2 Gaucher mice. FEBS Lett. 1999 Mar 26;447(2-3):167–170. doi: 10.1016/s0014-5793(99)00274-4. [DOI] [PubMed] [Google Scholar]
  17. Fingerhut R., van der Horst G. T., Verheijen F. W., Conzelmann E. Degradation of gangliosides by the lysosomal sialidase requires an activator protein. Eur J Biochem. 1992 Sep 15;208(3):623–629. doi: 10.1111/j.1432-1033.1992.tb17227.x. [DOI] [PubMed] [Google Scholar]
  18. Fischer G., Jatzkewitz H. The activator of cerebroside sulphatase. Purification from human liver and identification as a protein. Hoppe Seylers Z Physiol Chem. 1975 May;356(5):605–613. doi: 10.1515/bchm2.1975.356.1.605. [DOI] [PubMed] [Google Scholar]
  19. Furukawa K., Takamiya K., Okada M., Inoue M., Fukumoto S., Furukawa K. Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta. 2001 Feb 16;1525(1-2):1–12. doi: 10.1016/s0304-4165(00)00185-9. [DOI] [PubMed] [Google Scholar]
  20. Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
  21. Fürst W., Machleidt W., Sandhoff K. The precursor of sulfatide activator protein is processed to three different proteins. Biol Chem Hoppe Seyler. 1988 May;369(5):317–328. doi: 10.1515/bchm3.1988.369.1.317. [DOI] [PubMed] [Google Scholar]
  22. Fürst W., Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992 Jun 5;1126(1):1–16. doi: 10.1016/0005-2760(92)90210-m. [DOI] [PubMed] [Google Scholar]
  23. Fürst W., Schubert J., Machleidt W., Meyer H. E., Sandhoff K. The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein. Eur J Biochem. 1990 Sep 24;192(3):709–714. doi: 10.1111/j.1432-1033.1990.tb19280.x. [DOI] [PubMed] [Google Scholar]
  24. Geeraert L., Mannaerts G. P., van Veldhoven P. P. Conversion of dihydroceramide into ceramide: involvement of a desaturase. Biochem J. 1997 Oct 1;327(Pt 1):125–132. doi: 10.1042/bj3270125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Giehl A., Lemm T., Bartelsen O., Sandhoff K., Blume A. Interaction of the GM2-activator protein with phospholipid-ganglioside bilayer membranes and with monolayers at the air-water interface. Eur J Biochem. 1999 May;261(3):650–658. doi: 10.1046/j.1432-1327.1999.00302.x. [DOI] [PubMed] [Google Scholar]
  26. Gillard B. K., Clement R. G., Marcus D. M. Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways. Glycobiology. 1998 Sep;8(9):885–890. doi: 10.1093/glycob/8.9.885. [DOI] [PubMed] [Google Scholar]
  27. Giraudo C. G., Daniotti J. L., Maccioni H. J. Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci U S A. 2001 Jan 23;98(4):1625–1630. doi: 10.1073/pnas.031458398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Giraudo C. G., Rosales Fritz V. M., Maccioni H. J. GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells. Biochem J. 1999 Sep 15;342(Pt 3):633–640. [PMC free article] [PubMed] [Google Scholar]
  29. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  30. Harzer K., Paton B. C., Poulos A., Kustermann-Kuhn B., Roggendorf W., Grisar T., Popp M. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Eur J Pediatr. 1989 Oct;149(1):31–39. doi: 10.1007/BF02024331. [DOI] [PubMed] [Google Scholar]
  31. Henning R., Stoffel W. Glycosphingolipids in lysosomal membranes. Hoppe Seylers Z Physiol Chem. 1973 Jul;354(7):760–770. doi: 10.1515/bchm2.1973.354.2.760. [DOI] [PubMed] [Google Scholar]
  32. Hepbildikler Stefan T., Sandhoff Roger, Kolzer Melanie, Proia Richard L., Sandhoff Konrad. Physiological substrates for human lysosomal beta -hexosaminidase S. J Biol Chem. 2001 Nov 13;277(4):2562–2572. doi: 10.1074/jbc.M105457200. [DOI] [PubMed] [Google Scholar]
  33. Hidari K. I., Kawashima I., Tai T., Inagaki F., Nagai Y., Sanai Y. In vitro synthesis of disialoganglioside (GD1 alpha) from asialo-GM1 using sialyltransferases in rat liver Golgi vesicles. Eur J Biochem. 1994 Apr 1;221(1):603–609. doi: 10.1111/j.1432-1033.1994.tb18772.x. [DOI] [PubMed] [Google Scholar]
  34. Hiesberger T., Hüttler S., Rohlmann A., Schneider W., Sandhoff K., Herz J. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). EMBO J. 1998 Aug 17;17(16):4617–4625. doi: 10.1093/emboj/17.16.4617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hineno T., Sano A., Kondoh K., Ueno S., Kakimoto Y., Yoshida K. Secretion of sphingolipid hydrolase activator precursor, prosaposin. Biochem Biophys Res Commun. 1991 Apr 30;176(2):668–674. doi: 10.1016/s0006-291x(05)80236-0. [DOI] [PubMed] [Google Scholar]
  36. Hiraiwa M., Taylor E. M., Campana W. M., Darin S. J., O'Brien J. S. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4778–4781. doi: 10.1073/pnas.94.9.4778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ho M. W., O'Brien J. S. Gaucher's disease: deficiency of 'acid' -glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2810–2813. doi: 10.1073/pnas.68.11.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Honke Koichi, Hirahara Yukie, Dupree Jeffrey, Suzuki Kinuko, Popko Brian, Fukushima Kikuro, Fukushima Junko, Nagasawa Takashi, Yoshida Nobuaki, Wada Yoshinao. Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A. 2002 Mar 26;99(7):4227–4232. doi: 10.1073/pnas.032068299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hulková H., Cervenková M., Ledvinová J., Tochácková M., Hrebícek M., Poupetová H., Befekadu A., Berná L., Paton B. C., Harzer K. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet. 2001 Apr 15;10(9):927–940. doi: 10.1093/hmg/10.9.927. [DOI] [PubMed] [Google Scholar]
  40. Huwiler A., Kolter T., Pfeilschifter J., Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta. 2000 May 31;1485(2-3):63–99. doi: 10.1016/s1388-1981(00)00042-1. [DOI] [PubMed] [Google Scholar]
  41. Iber H., Zacharias C., Sandhoff K. The c-series gangliosides GT3, GT2 and GP1c are formed in rat liver Golgi by the same set of glycosyltransferases that catalyse the biosynthesis of asialo-, a- and b-series gangliosides. Glycobiology. 1992 Apr;2(2):137–142. doi: 10.1093/glycob/2.2.137. [DOI] [PubMed] [Google Scholar]
  42. Iber H., van Echten G., Klein R. A., Sandhoff K. pH-dependent changes of ganglioside biosynthesis in neuronal cell culture. Eur J Cell Biol. 1990 Aug;52(2):236–240. [PubMed] [Google Scholar]
  43. Ichikawa S., Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 1998 May;8(5):198–202. doi: 10.1016/s0962-8924(98)01249-5. [DOI] [PubMed] [Google Scholar]
  44. Ichikawa S., Nakajo N., Sakiyama H., Hirabayashi Y. A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2703–2707. doi: 10.1073/pnas.91.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ichikawa S., Sakiyama H., Suzuki G., Hidari K. I., Hirabayashi Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4638–4643. doi: 10.1073/pnas.93.10.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Irie F., Hidari K. I., Tai T., Li Y. T., Seyama Y., Hirabayashi Y. Biosynthetic pathway for a new series of gangliosides, GT1a alpha and GQ1b alpha. FEBS Lett. 1994 Sep 5;351(2):291–294. doi: 10.1016/0014-5793(94)00883-3. [DOI] [PubMed] [Google Scholar]
  47. Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kapitonov D., Yu R. K. Conserved domains of glycosyltransferases. Glycobiology. 1999 Oct;9(10):961–978. doi: 10.1093/glycob/9.10.961. [DOI] [PubMed] [Google Scholar]
  49. Kaufman B., Basu S., Roseman S. Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain. J Biol Chem. 1968 Nov 10;243(21):5804–5807. [PubMed] [Google Scholar]
  50. Kawai H., Allende M. L., Wada R., Kono M., Sango K., Deng C., Miyakawa T., Crawley J. N., Werth N., Bierfreund U. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem. 2000 Dec 27;276(10):6885–6888. doi: 10.1074/jbc.C000847200. [DOI] [PubMed] [Google Scholar]
  51. Kishimoto Y., Hiraiwa M., O'Brien J. S. Saposins: structure, function, distribution, and molecular genetics. J Lipid Res. 1992 Sep;33(9):1255–1267. [PubMed] [Google Scholar]
  52. Klein A., Henseler M., Klein C., Suzuki K., Harzer K., Sandhoff K. Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo. Biochem Biophys Res Commun. 1994 May 16;200(3):1440–1448. doi: 10.1006/bbrc.1994.1612. [DOI] [PubMed] [Google Scholar]
  53. Klima H., Tanaka A., Schnabel D., Nakano T., Schröder M., Suzuki K., Sandhoff K. Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett. 1991 Sep 9;289(2):260–264. doi: 10.1016/0014-5793(91)81084-l. [DOI] [PubMed] [Google Scholar]
  54. Kobayashi T., Stang E., Fang K. S., de Moerloose P., Parton R. G., Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature. 1998 Mar 12;392(6672):193–197. doi: 10.1038/32440. [DOI] [PubMed] [Google Scholar]
  55. Kolter T., Magin T. M., Sandhoff K. Biomolecule function: no reliable prediction from cell culture. Traffic. 2000 Oct;1(10):803–804. doi: 10.1034/j.1600-0854.2000.011007.x. [DOI] [PubMed] [Google Scholar]
  56. Kondoh K., Hineno T., Sano A., Kakimoto Y. Isolation and characterization of prosaposin from human milk. Biochem Biophys Res Commun. 1991 Nov 27;181(1):286–292. doi: 10.1016/s0006-291x(05)81415-9. [DOI] [PubMed] [Google Scholar]
  57. Kretz K. A., Carson G. S., Morimoto S., Kishimoto Y., Fluharty A. L., O'Brien J. S. Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2541–2544. doi: 10.1073/pnas.87.7.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kytzia H. J., Sandhoff K. Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem. 1985 Jun 25;260(12):7568–7572. [PubMed] [Google Scholar]
  59. Lannert H., Gorgas K., Meissner I., Wieland F. T., Jeckel D. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J Biol Chem. 1998 Jan 30;273(5):2939–2946. doi: 10.1074/jbc.273.5.2939. [DOI] [PubMed] [Google Scholar]
  60. Lapchak P. A., Araujo D. M., Shackelford D. A., Zivin J. A. Prosaptide exacerbates ischemia-induced behavioral deficits in vivo; an effect that does not involve mitogen-activated protein kinase activation. Neuroscience. 2000;101(4):811–814. doi: 10.1016/s0306-4522(00)00466-8. [DOI] [PubMed] [Google Scholar]
  61. Ledeen R. W., Yu R. K., Eng L. F. Gangliosides of human myelin: sialosylgalactosylceramide (G7) as a major component. J Neurochem. 1973 Oct;21(4):829–839. doi: 10.1111/j.1471-4159.1973.tb07527.x. [DOI] [PubMed] [Google Scholar]
  62. Liepinsh E., Andersson M., Ruysschaert J. M., Otting G. Saposin fold revealed by the NMR structure of NK-lysin. Nat Struct Biol. 1997 Oct;4(10):793–795. doi: 10.1038/nsb1097-793. [DOI] [PubMed] [Google Scholar]
  63. Linke T., Wilkening G., Lansmann S., Moczall H., Bartelsen O., Weisgerber J., Sandhoff K. Stimulation of acid sphingomyelinase activity by lysosomal lipids and sphingolipid activator proteins. Biol Chem. 2001 Feb;382(2):283–290. doi: 10.1515/BC.2001.035. [DOI] [PubMed] [Google Scholar]
  64. Linke T., Wilkening G., Sadeghlar F., Mozcall H., Bernardo K., Schuchman E., Sandhoff K. Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J Biol Chem. 2000 Dec 4;276(8):5760–5768. doi: 10.1074/jbc.M006846200. [DOI] [PubMed] [Google Scholar]
  65. Liu Y., Hoffmann A., Grinberg A., Westphal H., McDonald M. P., Miller K. M., Crawley J. N., Sandhoff K., Suzuki K., Proia R. L. Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8138–8143. doi: 10.1073/pnas.94.15.8138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Lloyd K. O., Furukawa K. Biosynthesis and functions of gangliosides: recent advances. Glycoconj J. 1998 Jul;15(7):627–636. doi: 10.1023/a:1006924128550. [DOI] [PubMed] [Google Scholar]
  67. Lui K., Commens C., Choong R., Jaworski R. Collodion babies with Gaucher's disease. Arch Dis Child. 1988 Jul;63(7):854–856. doi: 10.1136/adc.63.7.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Maccioni H. J., Daniotti J. L., Martina J. A. Organization of ganglioside synthesis in the Golgi apparatus. Biochim Biophys Acta. 1999 Feb 25;1437(2):101–118. doi: 10.1016/s1388-1981(99)00002-5. [DOI] [PubMed] [Google Scholar]
  69. Mahuran D. J. The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein. Biochim Biophys Acta. 1998 Jul 31;1393(1):1–18. doi: 10.1016/s0005-2760(98)00057-5. [DOI] [PubMed] [Google Scholar]
  70. Mandon E. C., van Echten G., Birk R., Schmidt R. R., Sandhoff K. Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases. Eur J Biochem. 1991 Jun 15;198(3):667–674. doi: 10.1111/j.1432-1033.1991.tb16065.x. [DOI] [PubMed] [Google Scholar]
  71. Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
  72. Matsuda J., Vanier M. T., Saito Y., Tohyama J., Suzuki K., Suzuki K. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Mol Genet. 2001 May 15;10(11):1191–1199. doi: 10.1093/hmg/10.11.1191. [DOI] [PubMed] [Google Scholar]
  73. Matsuzawa Y., Hostetler K. Y. Degradation of bis(monoacylglycero)phosphate by an acid phosphodiesterase in rat liver lysosomes. J Biol Chem. 1979 Jul 10;254(13):5997–6001. [PubMed] [Google Scholar]
  74. Mehl E., Jatzkewitz H. Eine Cerebrosidsulfatase aus Schweineniere. Hoppe Seylers Z Physiol Chem. 1964;339(1):260–276. [PubMed] [Google Scholar]
  75. Meier E. M., Schwarzmann G., Fürst W., Sandhoff K. The human GM2 activator protein. A substrate specific cofactor of beta-hexosaminidase A. J Biol Chem. 1991 Jan 25;266(3):1879–1887. [PubMed] [Google Scholar]
  76. Merrill A. H., Jr, Wang E. Biosynthesis of long-chain (sphingoid) bases from serine by LM cells. Evidence for introduction of the 4-trans-double bond after de novo biosynthesis of N-acylsphinganine(s). J Biol Chem. 1986 Mar 15;261(8):3764–3769. [PubMed] [Google Scholar]
  77. Michel C., van Echten-Deckert G. Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett. 1997 Oct 20;416(2):153–155. doi: 10.1016/s0014-5793(97)01187-3. [DOI] [PubMed] [Google Scholar]
  78. Mikami T., Kashiwagi M., Tsuchihashi K., Akino T., Gasa S. Substrate specificity and some other enzymatic properties of dihydroceramide desaturase (ceramide synthase) in fetal rat skin. J Biochem. 1998 May;123(5):906–911. doi: 10.1093/oxfordjournals.jbchem.a022023. [DOI] [PubMed] [Google Scholar]
  79. Miro Obradors M. J., Sillence D., Howitt S., Allan D. The subcellular sites of sphingomyelin synthesis in BHK cells. Biochim Biophys Acta. 1997 Oct 30;1359(1):1–12. doi: 10.1016/s0167-4889(97)00088-8. [DOI] [PubMed] [Google Scholar]
  80. Morell P., Radin N. S. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A's by brain microsomes. J Biol Chem. 1970 Jan 25;245(2):342–350. [PubMed] [Google Scholar]
  81. Morimoto S., Kishimoto Y., Tomich J., Weiler S., Ohashi T., Barranger J. A., Kretz K. A., O'Brien J. S. Interaction of saposins, acidic lipids, and glucosylceramidase. J Biol Chem. 1990 Feb 5;265(4):1933–1937. [PubMed] [Google Scholar]
  82. Morimoto S., Martin B. M., Kishimoto Y., O'Brien J. S. Saposin D: a sphingomyelinase activator. Biochem Biophys Res Commun. 1988 Oct 14;156(1):403–410. doi: 10.1016/s0006-291x(88)80855-6. [DOI] [PubMed] [Google Scholar]
  83. Morimoto S., Martin B. M., Yamamoto Y., Kretz K. A., O'Brien J. S., Kishimoto Y. Saposin A: second cerebrosidase activator protein. Proc Natl Acad Sci U S A. 1989 May;86(9):3389–3393. doi: 10.1073/pnas.86.9.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Mundel T. M., Heid H. W., Mahuran D. J., Kriz W., Mundel P. Ganglioside GM2-activator protein and vesicular transport in collecting duct intercalated cells. J Am Soc Nephrol. 1999 Mar;10(3):435–443. doi: 10.1681/ASN.V103435. [DOI] [PubMed] [Google Scholar]
  85. Munford R. S., Sheppard P. O., O'Hara P. J. Saposin-like proteins (SAPLIP) carry out diverse functions on a common backbone structure. J Lipid Res. 1995 Aug;36(8):1653–1663. [PubMed] [Google Scholar]
  86. Möbius W., Herzog V., Sandhoff K., Schwarzmann G. Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J Histochem Cytochem. 1999 Aug;47(8):1005–1014. doi: 10.1177/002215549904700804. [DOI] [PubMed] [Google Scholar]
  87. Nagiec M. M., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7899–7902. doi: 10.1073/pnas.91.17.7899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Nakano T., Sandhoff K., Stümper J., Christomanou H., Suzuki K. Structure of full-length cDNA coding for sulfatide activator, a Co-beta-glucosidase and two other homologous proteins: two alternate forms of the sulfatide activator. J Biochem. 1989 Feb;105(2):152–154. doi: 10.1093/oxfordjournals.jbchem.a122629. [DOI] [PubMed] [Google Scholar]
  89. Nakayama J., Fukuda M. N., Hirabayashi Y., Kanamori A., Sasaki K., Nishi T., Fukuda M. Expression cloning of a human GT3 synthase. GD3 AND GT3 are synthesized by a single enzyme. J Biol Chem. 1996 Feb 16;271(7):3684–3691. [PubMed] [Google Scholar]
  90. O'Brien J. S., Kretz K. A., Dewji N., Wenger D. A., Esch F., Fluharty A. L. Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science. 1988 Aug 26;241(4869):1098–1101. doi: 10.1126/science.2842863. [DOI] [PubMed] [Google Scholar]
  91. Paul P., Kamisaka Y., Marks D. L., Pagano R. E. Purification and characterization of UDP-glucose:ceramide glucosyltransferase from rat liver Golgi membranes. J Biol Chem. 1996 Jan 26;271(4):2287–2293. doi: 10.1074/jbc.271.4.2287. [DOI] [PubMed] [Google Scholar]
  92. Peters C., von Figura K. Biogenesis of lysosomal membranes. FEBS Lett. 1994 Jun 6;346(1):108–114. doi: 10.1016/0014-5793(94)00499-4. [DOI] [PubMed] [Google Scholar]
  93. Pohlentz G., Klein D., Schwarzmann G., Schmitz D., Sandhoff K. Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7044–7048. doi: 10.1073/pnas.85.19.7044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Ponting C. P., Russell R. B. Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem Sci. 1995 May;20(5):179–180. doi: 10.1016/s0968-0004(00)89003-9. [DOI] [PubMed] [Google Scholar]
  95. Proia Richard L. Glycosphingolipid functions: insights from engineered mouse models. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):879–883. doi: 10.1098/rstb.2003.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  97. Rother J., van Echten G., Schwarzmann G., Sandhoff K. Biosynthesis of sphingolipids: dihydroceramide and not sphinganine is desaturated by cultured cells. Biochem Biophys Res Commun. 1992 Nov 30;189(1):14–20. doi: 10.1016/0006-291x(92)91518-u. [DOI] [PubMed] [Google Scholar]
  98. Salvioli R., Tatti M., Ciaffoni F., Vaccaro A. M. Further studies on the reconstitution of glucosylceramidase activity by Sap C and anionic phospholipids. FEBS Lett. 2000 Apr 21;472(1):17–21. doi: 10.1016/s0014-5793(00)01417-4. [DOI] [PubMed] [Google Scholar]
  99. Sandhoff K., Harzer K., Wässle W., Jatzkewitz H. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem. 1971 Dec;18(12):2469–2489. doi: 10.1111/j.1471-4159.1971.tb00204.x. [DOI] [PubMed] [Google Scholar]
  100. Sandhoff K., Kolter T. Topology of glycosphingolipid degradation. Trends Cell Biol. 1996 Mar;6(3):98–103. doi: 10.1016/0962-8924(96)80999-8. [DOI] [PubMed] [Google Scholar]
  101. Sandhoff K. The biochemistry of sphingolipid storage diseases. Angew Chem Int Ed Engl. 1977 May;16(5):273–285. doi: 10.1002/anie.197702733. [DOI] [PubMed] [Google Scholar]
  102. Sarkar S., Miwa N., Kominami H., Igarashi N., Hayashi S., Okada T., Jahangeer S., Nakamura S. Regulation of mammalian phospholipase D2: interaction with and stimulation by G(M2) activator. Biochem J. 2001 Nov 1;359(Pt 3):599–604. doi: 10.1042/0264-6021:3590599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Sarmientos F., Schwarzmann G., Sandhoff K. Specificity of human glucosylceramide beta-glucosidase towards synthetic glucosylsphingolipids inserted into liposomes. Kinetic studies in a detergent-free assay system. Eur J Biochem. 1986 Nov 3;160(3):527–535. doi: 10.1111/j.1432-1033.1986.tb10071.x. [DOI] [PubMed] [Google Scholar]
  104. Schepers U., Glombitza G., Lemm T., Hoffmann A., Chabas A., Ozand P., Sandhoff K. Molecular analysis of a GM2-activator deficiency in two patients with GM2-gangliosidosis AB variant. Am J Hum Genet. 1996 Nov;59(5):1048–1056. [PMC free article] [PubMed] [Google Scholar]
  105. Schepers U., Lemm T., Herzog V., Sandhoff K. Characterization of regulatory elements in the 5'-flanking region of the GM2 activator gene. Biol Chem. 2000 Jul;381(7):531–544. doi: 10.1515/BC.2000.069. [DOI] [PubMed] [Google Scholar]
  106. Schnabel D., Schröder M., Fürst W., Klein A., Hurwitz R., Zenk T., Weber J., Harzer K., Paton B. C., Poulos A. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem. 1992 Feb 15;267(5):3312–3315. [PubMed] [Google Scholar]
  107. Schnabel D., Schröder M., Sandhoff K. Mutation in the sphingolipid activator protein 2 in a patient with a variant of Gaucher disease. FEBS Lett. 1991 Jun 17;284(1):57–59. doi: 10.1016/0014-5793(91)80760-z. [DOI] [PubMed] [Google Scholar]
  108. Schröder M., Schnabel D., Hurwitz R., Young E., Suzuki K., Sandhoff K. Molecular genetics of GM2-gangliosidosis AB variant: a novel mutation and expression in BHK cells. Hum Genet. 1993 Nov;92(5):437–440. doi: 10.1007/BF00216446. [DOI] [PubMed] [Google Scholar]
  109. Schröder M., Schnabel D., Suzuki K., Sandhoff K. A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB. FEBS Lett. 1991 Sep 23;290(1-2):1–3. doi: 10.1016/0014-5793(91)81211-p. [DOI] [PubMed] [Google Scholar]
  110. Schuette C. G., Pierstorff B., Huettler S., Sandhoff K. Sphingolipid activator proteins: proteins with complex functions in lipid degradation and skin biogenesis. Glycobiology. 2001 Jun;11(6):81R–90R. doi: 10.1093/glycob/11.6.81r. [DOI] [PubMed] [Google Scholar]
  111. Schütte C. G., Lemm T., Glombitza G. J., Sandhoff K. Complete localization of disulfide bonds in GM2 activator protein. Protein Sci. 1998 Apr;7(4):1039–1045. doi: 10.1002/pro.5560070421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Sheikh K. A., Sun J., Liu Y., Kawai H., Crawford T. O., Proia R. L., Griffin J. W., Schnaar R. L. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7532–7537. doi: 10.1073/pnas.96.13.7532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Shimeno H., Soeda S., Sakamoto M., Kouchi T., Kowakame T., Kihara T. Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids. 1998 Jun;33(6):601–605. doi: 10.1007/s11745-998-0246-2. [DOI] [PubMed] [Google Scholar]
  114. Smiljanic-Georgijev N., Rigat B., Xie B., Wang W., Mahuran D. J. Characterization of the affinity of the G(M2) activator protein for glycolipids by a fluorescence dequenching assay. Biochim Biophys Acta. 1997 May 23;1339(2):192–202. doi: 10.1016/s0167-4838(97)00002-2. [DOI] [PubMed] [Google Scholar]
  115. Stern C. A., Braverman T. R., Tiemeyer M. Molecular identification, tissue distribution and subcellular localization of mST3GalV/GM3 synthase. Glycobiology. 2000 Apr;10(4):365–374. doi: 10.1093/glycob/10.4.365. [DOI] [PubMed] [Google Scholar]
  116. Stern C. A., Tiemeyer M. A ganglioside-specific sialyltransferase localizes to axons and non-Golgi structures in neurons. J Neurosci. 2001 Mar 1;21(5):1434–1443. doi: 10.1523/JNEUROSCI.21-05-01434.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Stoffel W., LeKim D., Sticht G. Metabolism of sphingosine bases. 8. Distribution, isolation and properties of D-3-oxosphinganine reductase. Stereospecificity of the NADPH-dependent reaction of 3-oxodihydrospingosine (2-amino-1-hydroxyoctadecane-3-one). Hoppe Seylers Z Physiol Chem. 1968 Dec;349(12):1637–1644. doi: 10.1515/bchm2.1968.349.2.1637. [DOI] [PubMed] [Google Scholar]
  118. Swallow D. M., Islam I., Fox M. F., Povey S., Klima H., Schepers U., Sandhoff K. Regional localization of the gene coding for the GM2 activator protein (GM2A) to chromosome 5q32-33 and confirmation of the assignment of GM2AP to chromosome 3. Ann Hum Genet. 1993 Jul;57(Pt 3):187–193. doi: 10.1111/j.1469-1809.1993.tb01594.x. [DOI] [PubMed] [Google Scholar]
  119. Tagami Seiichi, Inokuchi Ji Jin-ichi, Kabayama Kazuya, Yoshimura Haruhiko, Kitamura Futoshi, Uemura Satoshi, Ogawa Chie, Ishii Atsushi, Saito Masaki, Ohtsuka Yoshinori. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem. 2001 Nov 13;277(5):3085–3092. doi: 10.1074/jbc.M103705200. [DOI] [PubMed] [Google Scholar]
  120. Tayama M., Soeda S., Kishimoto Y., Martin B. M., Callahan J. W., Hiraiwa M., O'Brien J. S. Effect of saposins on acid sphingomyelinase. Biochem J. 1993 Mar 1;290(Pt 2):401–404. doi: 10.1042/bj2900401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Vaccaro A. M., Salvioli R., Barca A., Tatti M., Ciaffoni F., Maras B., Siciliano R., Zappacosta F., Amoresano A., Pucci P. Structural analysis of saposin C and B. Complete localization of disulfide bridges. J Biol Chem. 1995 Apr 28;270(17):9953–9960. doi: 10.1074/jbc.270.17.9953. [DOI] [PubMed] [Google Scholar]
  122. Vaccaro A. M., Salvioli R., Tatti M., Ciaffoni F. Saposins and their interaction with lipids. Neurochem Res. 1999 Feb;24(2):307–314. doi: 10.1023/a:1022530508763. [DOI] [PubMed] [Google Scholar]
  123. Vogel A., Schwarzmann G., Sandhoff K. Glycosphingolipid specificity of the human sulfatide activator protein. Eur J Biochem. 1991 Sep 1;200(2):591–597. doi: 10.1111/j.1432-1033.1991.tb16222.x. [DOI] [PubMed] [Google Scholar]
  124. Warnock D. E., Lutz M. S., Blackburn W. A., Young W. W., Jr, Baenziger J. U. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2708–2712. doi: 10.1073/pnas.91.7.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Watanabe R., Wu K., Paul P., Marks D. L., Kobayashi T., Pittelkow M. R., Pagano R. E. Up-regulation of glucosylceramide synthase expression and activity during human keratinocyte differentiation. J Biol Chem. 1998 Apr 17;273(16):9651–9655. doi: 10.1074/jbc.273.16.9651. [DOI] [PubMed] [Google Scholar]
  126. Weiss B., Stoffel W. Human and murine serine-palmitoyl-CoA transferase--cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur J Biochem. 1997 Oct 1;249(1):239–247. doi: 10.1111/j.1432-1033.1997.00239.x. [DOI] [PubMed] [Google Scholar]
  127. Wenger D. A., Sattler M., Roth S. A protein activator of galactosylceramide beta-galactosidase. Biochim Biophys Acta. 1982 Sep 14;712(3):639–649. doi: 10.1016/0005-2760(82)90293-4. [DOI] [PubMed] [Google Scholar]
  128. Wertz P. W., Downing D. T. Covalently bound omega-hydroxyacylsphingosine in the stratum corneum. Biochim Biophys Acta. 1987 Jan 13;917(1):108–111. doi: 10.1016/0005-2760(87)90290-6. [DOI] [PubMed] [Google Scholar]
  129. Wertz P. W., van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem Phys Lipids. 1998 Feb;91(2):85–96. doi: 10.1016/s0009-3084(97)00108-4. [DOI] [PubMed] [Google Scholar]
  130. Wright C. S., Li S. C., Rastinejad F. Crystal structure of human GM2-activator protein with a novel beta-cup topology. J Mol Biol. 2000 Dec 1;304(3):411–422. doi: 10.1006/jmbi.2000.4225. [DOI] [PubMed] [Google Scholar]
  131. Wrobe D., Henseler M., Huettler S., Pascual Pascual S. I., Chabas A., Sandhoff K. A non-glycosylated and functionally deficient mutant (N215H) of the sphingolipid activator protein B (SAP-B) in a novel case of metachromatic leukodystrophy (MLD). J Inherit Metab Dis. 2000 Feb;23(1):63–76. doi: 10.1023/a:1005603014401. [DOI] [PubMed] [Google Scholar]
  132. Xie B., Kennedy J. L., McInnes B., Auger D., Mahuran D. Identification of a processed pseudogene related to the functional gene encoding the GM2 activator protein: localization of the pseudogene to human chromosome 3 and the functional gene to human chromosome 5. Genomics. 1992 Nov;14(3):796–798. doi: 10.1016/s0888-7543(05)80190-9. [DOI] [PubMed] [Google Scholar]
  133. Yamashita T., Wada R., Sasaki T., Deng C., Bierfreund U., Sandhoff K., Proia R. L. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9142–9147. doi: 10.1073/pnas.96.16.9142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Yip M. C., Dain J. A. The enzymic synthesis of ganglioside. 1. Brain uridine diphosphate D-galactose: N-acetyl-galactosaminyl-galactosyl-glucosyl-ceramide galactosyl transferase. Lipids. 1969 Jul;4(4):270–277. doi: 10.1007/BF02533185. [DOI] [PubMed] [Google Scholar]
  135. Young W. W., Jr, Allende M. L., Jaskiewicz E. Reevaluating the effect of Brefeldin A (BFA) on ganglioside synthesis: the location of GM2 synthase cannot be deduced from the inhibition of GM2 synthesis by BFA. Glycobiology. 1999 Jul;9(7):689–695. doi: 10.1093/glycob/9.7.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Yusuf H. K., Schwarzmann G., Pohlentz G., Sandhoff K. Oligosialogangliosides inhibit GM2- and GD3-synthesis in isolated Golgi vesicles from rat liver. Biol Chem Hoppe Seyler. 1987 May;368(5):455–462. doi: 10.1515/bchm3.1987.368.1.455. [DOI] [PubMed] [Google Scholar]
  137. Zaltash S., Johansson J. Secondary structure and limited proteolysis give experimental evidence that the precursor of pulmonary surfactant protein B contains three saposin-like domains. FEBS Lett. 1998 Feb 13;423(1):1–4. doi: 10.1016/s0014-5793(97)01582-2. [DOI] [PubMed] [Google Scholar]
  138. Zschoche A., Fürst W., Schwarzmann G., Sanhoff K. Hydrolysis of lactosylceramide by human galactosylceramidase and GM1-beta-galactosidase in a detergent-free system and its stimulation by sphingolipid activator proteins, sap-B and sap-C. Activator proteins stimulate lactosylceramide hydrolysis. Eur J Biochem. 1994 May 15;222(1):83–90. doi: 10.1111/j.1432-1033.1994.tb18844.x. [DOI] [PubMed] [Google Scholar]
  139. van Echten G., Birk R., Brenner-Weiss G., Schmidt R. R., Sandhoff K. Modulation of sphingolipid biosynthesis in primary cultured neurons by long chain bases. J Biol Chem. 1990 Jun 5;265(16):9333–9339. [PubMed] [Google Scholar]
  140. van Echten G., Sandhoff K. Ganglioside metabolism. Enzymology, Topology, and regulation. J Biol Chem. 1993 Mar 15;268(8):5341–5344. [PubMed] [Google Scholar]
  141. van Meer Gerrit. Cell biology. The different hues of lipid rafts. Science. 2002 May 3;296(5569):855–857. doi: 10.1126/science.1071491. [DOI] [PubMed] [Google Scholar]
  142. van der Goot F. Gisou, Gruenberg Jean. Oiling the wheels of the endocytic pathway. Trends Cell Biol. 2002 Jul;12(7):296–299. doi: 10.1016/s0962-8924(02)02307-3. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES