Abstract
Disorders of lysosomal metabolism often involve the accumulation of specific types of glycolipid, particularly gangliosides, because of either degradative failure or other currently unknown mechanisms. Although the precise role of gangliosides in cells remains enigmatic, the presence of specific abnormalities secondary to ganglioside accumulation in lysosomal diseases has suggested important biological functions. Chief among these is the growth of new dendrites on particular classes of mature neurons secondary to an increase in GM2 ganglioside. That GM2 has also been shown to be elevated in normal immature neurons coincident with dendritic sprouting provides a compelling argument that this ganglioside plays a role in dendritic initiation. This discovery has led to the search for other regulators of dendritic differentiation that may in some way be linked to the expression and/or function of GM2 ganglioside. Principal candidates that have emerged include tyrosine kinase receptors, small GTPases and calcium/calmodulin-dependent protein kinase II. Understanding the mechanism underlying ectopic dendritogenesis in lysosomal diseases can be expected to generate significant insight into the control of dendritic plasticity in normal brain. The detrimental aspects of ganglioside accumulation in storage diseases as well as the potential link between gangliosides and dendritogenesis also provide a strong rationale for developing pharmacological means to manipulate ganglioside expression in neurons.
Full Text
The Full Text of this article is available as a PDF (215.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe A., Inokuchi J., Jimbo M., Shimeno H., Nagamatsu A., Shayman J. A., Shukla G. S., Radin N. S. Improved inhibitors of glucosylceramide synthase. J Biochem. 1992 Feb;111(2):191–196. doi: 10.1093/oxfordjournals.jbchem.a123736. [DOI] [PubMed] [Google Scholar]
- Ahern-Rindell A. J., Prieur D. J., Murnane R. D., Raghavan S. S., Daniel P. F., McCluer R. H., Walkley S. U., Parish S. M. Inherited lysosomal storage disease associated with deficiencies of beta-galactosidase and alpha-neuraminidase in sheep. Am J Med Genet. 1988 Sep;31(1):39–56. doi: 10.1002/ajmg.1320310108. [DOI] [PubMed] [Google Scholar]
- Avila J. L., Convit J. Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem J. 1975 Oct;152(1):57–64. doi: 10.1042/bj1520057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumkötter J., Cantz M. Decreased ganglioside neuraminidase activity in fibroblasts from mucopolysaccharidosis patients. Inhibition of the activity in vitro by sulfated glycosaminoglycans and other compounds. Biochim Biophys Acta. 1983 Dec 13;761(2):163–170. doi: 10.1016/0304-4165(83)90225-8. [DOI] [PubMed] [Google Scholar]
- Bayer K. U., Löhler J., Schulman H., Harbers K. Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res. 1999 Jun 18;70(1):147–154. doi: 10.1016/s0169-328x(99)00131-x. [DOI] [PubMed] [Google Scholar]
- Brdicková N., Brdicka T., Andera L., Spicka J., Angelisová P., Milgram S. L., Horejsí V. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 2001 Oct 26;507(2):133–136. doi: 10.1016/s0014-5793(01)02955-6. [DOI] [PubMed] [Google Scholar]
- Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
- Buell S. J., Coleman P. D. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science. 1979 Nov 16;206(4420):854–856. doi: 10.1126/science.493989. [DOI] [PubMed] [Google Scholar]
- Butler L. S., Silva A. J., Abeliovich A., Watanabe Y., Tonegawa S., McNamara J. O. Limbic epilepsy in transgenic mice carrying a Ca2+/calmodulin-dependent kinase II alpha-subunit mutation. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6852–6855. doi: 10.1073/pnas.92.15.6852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butters Terry D., Mellor Howard R., Narita Keishi, Dwek Raymond A., Platt Frances M. Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):927–945. doi: 10.1098/rstb.2003.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carstea E. D., Morris J. A., Coleman K. G., Loftus S. K., Zhang D., Cummings C., Gu J., Rosenfeld M. A., Pavan W. J., Krizman D. B. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997 Jul 11;277(5323):228–231. doi: 10.1126/science.277.5323.228. [DOI] [PubMed] [Google Scholar]
- Ceresa B. P., Schmid S. L. Regulation of signal transduction by endocytosis. Curr Opin Cell Biol. 2000 Apr;12(2):204–210. doi: 10.1016/s0955-0674(99)00077-0. [DOI] [PubMed] [Google Scholar]
- Chen C., Rainnie D. G., Greene R. W., Tonegawa S. Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science. 1994 Oct 14;266(5183):291–294. doi: 10.1126/science.7939668. [DOI] [PubMed] [Google Scholar]
- Constantopoulos G., Iqbal K., Dekaban A. S. Mucopolysaccharidosis types IH, IS, II, and IIIA: glycosaminoglycans and lipids of isolated brain cells and other fractions from autopsied tissues. J Neurochem. 1980 Jun;34(6):1399–1411. doi: 10.1111/j.1471-4159.1980.tb11220.x. [DOI] [PubMed] [Google Scholar]
- Conzelmann E., Sandhoff K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corriveau R. A., Shatz C. J., Nedivi E. Dynamic regulation of cpg15 during activity-dependent synaptic development in the mammalian visual system. J Neurosci. 1999 Sep 15;19(18):7999–8008. doi: 10.1523/JNEUROSCI.19-18-07999.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummings J. F., Wood P. A., Walkley S. U., de Lahunta A., DeForest M. E. GM2 gangliosidosis in a Japanese spaniel. Acta Neuropathol. 1985;67(3-4):247–253. doi: 10.1007/BF00687809. [DOI] [PubMed] [Google Scholar]
- Davies J. P., Chen F. W., Ioannou Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science. 2000 Dec 22;290(5500):2295–2298. doi: 10.1126/science.290.5500.2295. [DOI] [PubMed] [Google Scholar]
- Fukunaga K., Miyamoto E., Soderling T. R. Regulation of Ca2+/calmodulin-dependent protein kinase II by brain gangliosides. J Neurochem. 1990 Jan;54(1):103–109. doi: 10.1111/j.1471-4159.1990.tb13288.x. [DOI] [PubMed] [Google Scholar]
- Futerman A. H. Inhibition of sphingolipid synthesis: effects on glycosphingolipid-GPI-anchored protein microdomains. Trends Cell Biol. 1995 Oct;5(10):377–380. doi: 10.1016/s0962-8924(00)89078-9. [DOI] [PubMed] [Google Scholar]
- Glazewski S., Chen C. M., Silva A., Fox K. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex. Science. 1996 Apr 19;272(5260):421–423. doi: 10.1126/science.272.5260.421. [DOI] [PubMed] [Google Scholar]
- Glazewski S., Giese K. P., Silva A., Fox K. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity. Nat Neurosci. 2000 Sep;3(9):911–918. doi: 10.1038/78820. [DOI] [PubMed] [Google Scholar]
- Goodman L. A., Walkley S. U. Elevated GM2 ganglioside is associated with dendritic proliferation in normal developing neocortex. Brain Res Dev Brain Res. 1996 May 31;93(1-2):162–171. doi: 10.1016/0165-3806(96)00029-6. [DOI] [PubMed] [Google Scholar]
- Gordon J. A., Cioffi D., Silva A. J., Stryker M. P. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice. Neuron. 1996 Sep;17(3):491–499. doi: 10.1016/s0896-6273(00)80181-6. [DOI] [PubMed] [Google Scholar]
- Groc Laurent, Petanjek Zdravko, Gustafsson Bengt, Ben-Ari Yehezkel, Hanse Eric, Khazipov Roustem. In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells. Eur J Neurosci. 2002 Nov;16(10):1931–1938. doi: 10.1046/j.1460-9568.2002.02264.x. [DOI] [PubMed] [Google Scholar]
- Guo X., Lin Y., Horbinski C., Drahushuk K. M., Kim I. J., Kaplan P. L., Lein P., Wang T., Higgins D. Dendritic growth induced by BMP-7 requires Smad1 and proteasome activity. J Neurobiol. 2001 Aug;48(2):120–130. [PubMed] [Google Scholar]
- Hakomori S. I. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J. 2000 Mar-Apr;17(3 -4):143–151. doi: 10.1023/a:1026524820177. [DOI] [PubMed] [Google Scholar]
- Harder Thomas. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):863–868. doi: 10.1098/rstb.2003.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashi H., Yoshida S., Sato K., Yamagata T. Interaction of ganglioside with specific peptide sequences as a mechanism for the modulation of calmodulin-dependent enzymes. J Biochem. 1996 Jul;120(1):66–73. doi: 10.1093/oxfordjournals.jbchem.a021395. [DOI] [PubMed] [Google Scholar]
- Hoessli D. C., Ilangumaran S., Soltermann A., Robinson P. J., Borisch B., Nasir-Ud-Din Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J. 2000 Mar-Apr;17(3 -4):191–197. doi: 10.1023/a:1026585006064. [DOI] [PubMed] [Google Scholar]
- Hynds D. L., Summers M., Van Brocklyn J., O'Dorisio M. S., Yates A. J. Gangliosides inhibit platelet-derived growth factor-stimulated growth, receptor phosphorylation, and dimerization in neuroblastoma SH-SY5Y cells. J Neurochem. 1995 Nov;65(5):2251–2258. doi: 10.1046/j.1471-4159.1995.65052251.x. [DOI] [PubMed] [Google Scholar]
- Jolly R. D., Walkley S. U. Lysosomal storage diseases of animals: an essay in comparative pathology. Vet Pathol. 1997 Nov;34(6):527–548. doi: 10.1177/030098589703400601. [DOI] [PubMed] [Google Scholar]
- Kasahara K., Sanai Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J. 2000 Mar-Apr;17(3 -4):153–162. doi: 10.1023/a:1026576804247. [DOI] [PubMed] [Google Scholar]
- Katz L. C., Shatz C. J. Synaptic activity and the construction of cortical circuits. Science. 1996 Nov 15;274(5290):1133–1138. doi: 10.1126/science.274.5290.1133. [DOI] [PubMed] [Google Scholar]
- Kint J. A., Dacremont G., Carton D., Orye E., Hooft C. Mucopolysaccharidosis: secondarily induced abnormal distribution of lysosomal isoenzymes. Science. 1973 Jul 27;181(4097):352–354. doi: 10.1126/science.181.4097.352. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Hirabayashi Y. Lipid membrane domains in cell surface and vacuolar systems. Glycoconj J. 2000 Mar-Apr;17(3 -4):163–171. doi: 10.1023/a:1026528921085. [DOI] [PubMed] [Google Scholar]
- Ledeen R. W., Yu R. K. Gangliosides: structure, isolation, and analysis. Methods Enzymol. 1982;83:139–191. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
- Lee T., Winter C., Marticke S. S., Lee A., Luo L. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron. 2000 Feb;25(2):307–316. doi: 10.1016/s0896-6273(00)80896-x. [DOI] [PubMed] [Google Scholar]
- Li Z., Van Aelst L., Cline H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci. 2000 Mar;3(3):217–225. doi: 10.1038/72920. [DOI] [PubMed] [Google Scholar]
- Lisman J., Schulman H., Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002 Mar;3(3):175–190. doi: 10.1038/nrn753. [DOI] [PubMed] [Google Scholar]
- Liu X. B., Jones E. G. Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7332–7336. doi: 10.1073/pnas.93.14.7332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Wu Y. P., Wada R., Neufeld E. B., Mullin K. A., Howard A. C., Pentchev P. G., Vanier M. T., Suzuki K., Proia R. L. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet. 2000 Apr 12;9(7):1087–1092. doi: 10.1093/hmg/9.7.1087. [DOI] [PubMed] [Google Scholar]
- Lusa S., Blom T. S., Eskelinen E. L., Kuismanen E., Månsson J. E., Simons K., Ikonen E. Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci. 2001 May;114(Pt 10):1893–1900. doi: 10.1242/jcs.114.10.1893. [DOI] [PubMed] [Google Scholar]
- March P. A., Thrall M. A., Brown D. E., Mitchell T. W., Lowenthal A. C., Walkley S. U. GABAergic neuroaxonal dystrophy and other cytopathological alterations in feline Niemann-Pick disease type C. Acta Neuropathol. 1997 Aug;94(2):164–172. doi: 10.1007/s004010050689. [DOI] [PubMed] [Google Scholar]
- Matus A. Actin-based plasticity in dendritic spines. Science. 2000 Oct 27;290(5492):754–758. doi: 10.1126/science.290.5492.754. [DOI] [PubMed] [Google Scholar]
- McAllister A. K. Cellular and molecular mechanisms of dendrite growth. Cereb Cortex. 2000 Oct;10(10):963–973. doi: 10.1093/cercor/10.10.963. [DOI] [PubMed] [Google Scholar]
- McAllister A. K., Katz L. C., Lo D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron. 1996 Dec;17(6):1057–1064. doi: 10.1016/s0896-6273(00)80239-1. [DOI] [PubMed] [Google Scholar]
- McAllister A. K., Lo D. C., Katz L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron. 1995 Oct;15(4):791–803. doi: 10.1016/0896-6273(95)90171-x. [DOI] [PubMed] [Google Scholar]
- McDonald Alexander J., Muller Jay F., Mascagni Franco. GABAergic innervation of alpha type II calcium/calmodulin-dependent protein kinase immunoreactive pyramidal neurons in the rat basolateral amygdala. J Comp Neurol. 2002 May 6;446(3):199–218. doi: 10.1002/cne.10204. [DOI] [PubMed] [Google Scholar]
- Mutoh T., Tokuda A., Miyadai T., Hamaguchi M., Fujiki N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5087–5091. doi: 10.1073/pnas.92.11.5087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nedivi E., Wu G. Y., Cline H. T. Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science. 1998 Sep 18;281(5384):1863–1866. doi: 10.1126/science.281.5384.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagano R. E., Puri V., Dominguez M., Marks D. L. Membrane traffic in sphingolipid storage diseases. Traffic. 2000 Nov;1(11):807–815. doi: 10.1034/j.1600-0854.2000.011101.x. [DOI] [PubMed] [Google Scholar]
- Pentchev P. G., Blanchette-Mackie E. J., Dawidowicz E. A. The NP-C gene: a key to pathways of intracellular cholesterol transport. Trends Cell Biol. 1994 Oct;4(10):365–369. doi: 10.1016/0962-8924(94)90086-8. [DOI] [PubMed] [Google Scholar]
- Pitto M., Mutoh T., Kuriyama M., Ferraretto A., Palestini P., Masserini M. Influence of endogenous GM1 ganglioside on TrkB activity, in cultured neurons. FEBS Lett. 1998 Nov 13;439(1-2):93–96. doi: 10.1016/s0014-5793(98)01344-1. [DOI] [PubMed] [Google Scholar]
- Platt F. M., Butters T. D. New therapeutic prospects for the glycosphingolipid lysosomal storage diseases. Biochem Pharmacol. 1998 Aug 15;56(4):421–430. doi: 10.1016/s0006-2952(98)00115-4. [DOI] [PubMed] [Google Scholar]
- Platt F. M., Jeyakumar M., Andersson U., Priestman D. A., Dwek R. A., Butters T. D., Cox T. M., Lachmann R. H., Hollak C., Aerts J. M. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis. 2001 Apr;24(2):275–290. doi: 10.1023/a:1010335505357. [DOI] [PubMed] [Google Scholar]
- Platt Frances M., Jeyakumar Mylvaganam, Andersson Ulrika, Heare Tanya, Dwek Raymond A., Butters Terry D. Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):947–954. doi: 10.1098/rstb.2003.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polleux F., Morrow T., Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature. 2000 Apr 6;404(6778):567–573. doi: 10.1038/35007001. [DOI] [PubMed] [Google Scholar]
- Proia Richard L. Glycosphingolipid functions: insights from engineered mouse models. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):879–883. doi: 10.1098/rstb.2003.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purpura D. P. Ectopic dendritic growth in mature pyramidal neurones in human ganglioside storage disease. Nature. 1978 Nov 30;276(5687):520–521. doi: 10.1038/276520a0. [DOI] [PubMed] [Google Scholar]
- Purpura D. P., Suzuki K. Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease. Brain Res. 1976 Oct 29;116(1):1–21. doi: 10.1016/0006-8993(76)90245-6. [DOI] [PubMed] [Google Scholar]
- Redmond L., Oh S. R., Hicks C., Weinmaster G., Ghosh A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci. 2000 Jan;3(1):30–40. doi: 10.1038/71104. [DOI] [PubMed] [Google Scholar]
- Sachinidis A., Kraus R., Seul C., Meyer zu Brickwedde M. K., Schulte K., Ko Y., Hoppe J., Vetter H. Gangliosides GM1, GM2 and GM3 inhibit the platelet-derived growth factor-induced signalling transduction pathway in vascular smooth muscle cells by different mechanisms. Eur J Cell Biol. 1996 Sep;71(1):79–88. [PubMed] [Google Scholar]
- Sandhoff K., Klein A. Intracellular trafficking of glycosphingolipids: role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett. 1994 Jun 6;346(1):103–107. doi: 10.1016/0014-5793(94)00282-7. [DOI] [PubMed] [Google Scholar]
- Sandhoff Konrad, Kolter Thomas. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):847–861. doi: 10.1098/rstb.2003.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato M., Akaboshi S., Katsumoto T., Taniguchi M., Higaki K., Tai T., Sakuraba H., Ohno K. Accumulation of cholesterol and GM2 ganglioside in cells cultured in the presence of progesterone: an implication for the basic defect in Niemann-Pick disease type C. Brain Dev. 1998 Jan;20(1):50–52. doi: 10.1016/s0387-7604(97)00099-5. [DOI] [PubMed] [Google Scholar]
- Siegel D. A., Walkley S. U. Growth of ectopic dendrites on cortical pyramidal neurons in neuronal storage diseases correlates with abnormal accumulation of GM2 ganglioside. J Neurochem. 1994 May;62(5):1852–1862. doi: 10.1046/j.1471-4159.1994.62051852.x. [DOI] [PubMed] [Google Scholar]
- Simons K., Gruenberg J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 2000 Nov;10(11):459–462. doi: 10.1016/s0962-8924(00)01847-x. [DOI] [PubMed] [Google Scholar]
- Soderling T. R. CaM-kinases: modulators of synaptic plasticity. Curr Opin Neurobiol. 2000 Jun;10(3):375–380. doi: 10.1016/s0959-4388(00)00090-8. [DOI] [PubMed] [Google Scholar]
- Suzaki K. The pattern of mammalian brain gangliosides. 3. Regional and developmental differences. J Neurochem. 1965 Dec;12(12):969–979. doi: 10.1111/j.1471-4159.1965.tb10256.x. [DOI] [PubMed] [Google Scholar]
- Threadgill R., Bobb K., Ghosh A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron. 1997 Sep;19(3):625–634. doi: 10.1016/s0896-6273(00)80376-1. [DOI] [PubMed] [Google Scholar]
- Tighilet B., Hashikawa T., Jones E. G. Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. J Neurosci. 1998 Mar 15;18(6):2129–2146. doi: 10.1523/JNEUROSCI.18-06-02129.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolwani R. J., Buckmaster P. S., Varma S., Cosgaya J. M., Wu Y., Suri C., Shooter E. M. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience. 2002;114(3):795–805. doi: 10.1016/s0306-4522(02)00301-9. [DOI] [PubMed] [Google Scholar]
- Trinchera M., Ghidoni R., Greggia L., Tettamanti G. The N-acetylgalactosamine residue of exogenous GM2 ganglioside is recycled for glycoconjugate biosynthesis in rat liver. Biochem J. 1990 Feb 15;266(1):103–106. doi: 10.1042/bj2660103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trinchera M., Ghidoni R. Precursor-product relationship between GM1 and GD1a biosynthesized from exogenous GM2 ganglioside in rat liver. J Biochem. 1990 Apr;107(4):619–623. doi: 10.1093/oxfordjournals.jbchem.a123096. [DOI] [PubMed] [Google Scholar]
- Usuki S., Ren J., Utsunomiya I., Cashman N. R., Inokuchi J., Miyatake T. GM2 ganglioside regulates the function of ciliary neurotrophic factor receptor in murine immortalized motor neuron-like cells (NSC-34). Neurochem Res. 2001 Apr;26(4):375–382. doi: 10.1023/a:1010999014657. [DOI] [PubMed] [Google Scholar]
- Volkmar F. R., Greenough W. T. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972 Jun 30;176(4042):1445–1447. doi: 10.1126/science.176.4042.1445. [DOI] [PubMed] [Google Scholar]
- Vyas Alka A., Patel Himatkumar V., Fromholt Susan E., Heffer-Lauc Marija, Vyas Kavita A., Dang Jiyoung, Schachner Melitta, Schnaar Ronald L. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8412–8417. doi: 10.1073/pnas.072211699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vyas K. A., Patel H. V., Vyas A. A., Schnaar R. L. Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem. 2001 Feb;382(2):241–250. doi: 10.1515/BC.2001.031. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Baker H. J. Sphingomyelin lipidosis in a cat: Golgi studies. Acta Neuropathol. 1984;65(2):138–144. doi: 10.1007/BF00690467. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Blakemore W. F., Purpura D. P. Alterations in neuron morphology in feline mannosidosis. A Golgi study. Acta Neuropathol. 1981;53(1):75–79. doi: 10.1007/BF00697187. [DOI] [PubMed] [Google Scholar]
- Walkley S. U. Cellular pathology of lysosomal storage disorders. Brain Pathol. 1998 Jan;8(1):175–193. doi: 10.1111/j.1750-3639.1998.tb00144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walkley S. U., Haskins M. E., Shull R. M. Alterations in neuron morphology in mucopolysaccharidosis type I. A Golgi study. Acta Neuropathol. 1988;75(6):611–620. doi: 10.1007/BF00686207. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., March P. A., Schroeder C. E., Wurzelmann S., Jolly R. D. Pathogenesis of brain dysfunction in Batten disease. Am J Med Genet. 1995 Jun 5;57(2):196–203. doi: 10.1002/ajmg.1320570218. [DOI] [PubMed] [Google Scholar]
- Walkley S. U. New proteins from old diseases provide novel insights in cell biology. Curr Opin Neurol. 2001 Dec;14(6):805–810. doi: 10.1097/00019052-200112000-00020. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Pierok A. L. Ferric ion-ferrocyanide staining in ganglioside storage disease establishes that meganeurites are of axon hillock origin and distinct from axonal spheroids. Brain Res. 1986 Sep 24;382(2):379–386. doi: 10.1016/0006-8993(86)91348-x. [DOI] [PubMed] [Google Scholar]
- Walkley S. U. Pyramidal neurons with ectopic dendrites in storage diseases exhibit increased GM2 ganglioside immunoreactivity. Neuroscience. 1995 Oct;68(4):1027–1035. doi: 10.1016/0306-4522(95)00208-z. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Siegel D. A., Wurzelmann S. Ectopic dendritogenesis and associated synapse formation in swainsonine-induced neuronal storage disease. J Neurosci. 1988 Feb;8(2):445–457. doi: 10.1523/JNEUROSCI.08-02-00445.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walkley S. U., Wurzelmann S., Purpura D. P. Ultrastructure of neurites and meganeurites of cortical pyramidal neurons in feline gangliosidosis as revealed by the combined Golgi-EM technique. Brain Res. 1981 May 4;211(2):393–398. doi: 10.1016/0006-8993(81)90711-3. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Wurzelmann S., Rattazzi M. C., Baker H. J. Distribution of ectopic neurite growth and other geometrical distortions of CNS neurons in feline GM2 gangliosidosis. Brain Res. 1990 Feb 26;510(1):63–73. doi: 10.1016/0006-8993(90)90728-t. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Wurzelmann S., Siegel D. A. Ectopic axon hillock-associated neurite growth is maintained in metabolically reversed swainsonine-induced neuronal storage disease. Brain Res. 1987 Apr 28;410(1):89–96. doi: 10.1016/s0006-8993(87)80025-2. [DOI] [PubMed] [Google Scholar]
- Walkley S. U., Zervas M., Wiseman S. Gangliosides as modulators of dendritogenesis in normal and storage disease-affected pyramidal neurons. Cereb Cortex. 2000 Oct;10(10):1028–1037. doi: 10.1093/cercor/10.10.1028. [DOI] [PubMed] [Google Scholar]
- Whitford Kristin L., Dijkhuizen Paul, Polleux Franck, Ghosh Anirvan. Molecular control of cortical dendrite development. Annu Rev Neurosci. 2002 Mar 19;25:127–149. doi: 10.1146/annurev.neuro.25.112701.142932. [DOI] [PubMed] [Google Scholar]
- Wu G. Y., Cline H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science. 1998 Jan 9;279(5348):222–226. doi: 10.1126/science.279.5348.222. [DOI] [PubMed] [Google Scholar]
- Yacoubian T. A., Lo D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci. 2000 Apr;3(4):342–349. doi: 10.1038/73911. [DOI] [PubMed] [Google Scholar]
- Yamashita Toshihide, Higuchi Haruhisa, Tohyama Masaya. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol. 2002 May 13;157(4):565–570. doi: 10.1083/jcb.200202010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yates A. J., Saqr H. E., Van Brocklyn J. Ganglioside modulation of the PDGF receptor. A model for ganglioside functions. J Neurooncol. 1995;24(1):65–73. doi: 10.1007/BF01052661. [DOI] [PubMed] [Google Scholar]
- Yu R. K., Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Mol Cell Endocrinol. 2001 May 25;177(1-2):19–24. doi: 10.1016/s0303-7207(01)00457-9. [DOI] [PubMed] [Google Scholar]
- Yu R. K. Development regulation of ganglioside metabolism. Prog Brain Res. 1994;101:31–44. doi: 10.1016/s0079-6123(08)61938-x. [DOI] [PubMed] [Google Scholar]
- Zervas M., Dobrenis K., Walkley S. U. Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol. 2001 Jan;60(1):49–64. doi: 10.1093/jnen/60.1.49. [DOI] [PubMed] [Google Scholar]
- Zervas M., Somers K. L., Thrall M. A., Walkley S. U. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol. 2001 Aug 21;11(16):1283–1287. doi: 10.1016/s0960-9822(01)00396-7. [DOI] [PubMed] [Google Scholar]
- Zervas M., Walkley S. U. Ferret pyramidal cell dendritogenesis: changes in morphology and ganglioside expression during cortical development. J Comp Neurol. 1999 Oct 25;413(3):429–448. doi: 10.1002/(sici)1096-9861(19991025)413:3<429::aid-cne6>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Zurita A. R., Maccioni H. J., Daniotti J. L. Modulation of epidermal growth factor receptor phosphorylation by endogenously expressed gangliosides. Biochem J. 2001 Apr 15;355(Pt 2):465–472. doi: 10.1042/0264-6021:3550465. [DOI] [PMC free article] [PubMed] [Google Scholar]