Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 May 29;358(1433):885–891. doi: 10.1098/rstb.2003.1275

Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases.

Richard E Pagano 1
PMCID: PMC1693187  PMID: 12803922

Abstract

In this review, recent studies of membrane lipid transport in sphingolipid (SL) storage disease (SLSD) fibroblasts are summarized. Several fluorescent glycosphingolipid (GSL) analogues are internalized from the plasma membrane via caveolae and are subsequently transported to the Golgi complex of normal fibroblasts, while in 10 different SLSD cell types, these lipids accumulate in endosomes and lysosomes. Additional studies have shown that cholesterol homeostasis is perturbed in multiple SLSDs secondary to accumulation of endogenous SLs, and that mis-targeting of the GSLs is regulated by cellular cholesterol. Golgi targeting of GSLs internalized via caveolae is dependent on microtubules and phosphoinositide 3-kinase(s) and is inhibited by expression of dominant-negative rab7 and rab9 constructs. Overexpression of wild-type rab7 or rab9 (but not rab11) in Niemann-Pick C fibroblasts results in correction of lipid trafficking defects, including restoration of Golgi targeting of fluorescent lactosylceramide and endogenous GM1 ganglioside (monitored by the transport of fluorescent cholera toxin), and a dramatic reduction in accumulation of intracellular cholesterol. These results suggest an approach for restoring normal lipid trafficking in this, and perhaps other, SLSD cell types, and may provide a basis for future therapy of these diseases.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Gregory S., Lee L., Killen P. D., Brady R. O., Kulkarni A., Shayman J. A. Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation. J Clin Invest. 2000 Jun;105(11):1563–1571. doi: 10.1172/JCI9711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  3. Aoki T., Nomura R., Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res. 1999 Dec 15;253(2):629–636. doi: 10.1006/excr.1999.4652. [DOI] [PubMed] [Google Scholar]
  4. Bach G. Mucolipidosis type IV. Mol Genet Metab. 2001 Jul;73(3):197–203. doi: 10.1006/mgme.2001.3195. [DOI] [PubMed] [Google Scholar]
  5. Brady Roscoe O. Enzyme replacement therapy: conception, chaos and culmination. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):915–919. doi: 10.1098/rstb.2003.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butters T. D., Dwek R. A., Platt F. M. Inhibition of glycosphingolipid biosynthesis: application to lysosomal storage disorders. Chem Rev. 2000 Dec 13;100(12):4683–4696. doi: 10.1021/cr990292q. [DOI] [PubMed] [Google Scholar]
  7. Butters Terry D., Mellor Howard R., Narita Keishi, Dwek Raymond A., Platt Frances M. Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):927–945. doi: 10.1098/rstb.2003.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cabrera-Salazar Mario A., Novelli Enrico, Barranger John A. Gene therapy for the lysosomal storage disorders. Curr Opin Mol Ther. 2002 Aug;4(4):349–358. [PubMed] [Google Scholar]
  9. Cavalli V., Corti M., Gruenberg J. Endocytosis and signaling cascades: a close encounter. FEBS Lett. 2001 Jun 8;498(2-3):190–196. doi: 10.1016/s0014-5793(01)02484-x. [DOI] [PubMed] [Google Scholar]
  10. Chatterjee S. Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol. 1998 Oct;18(10):1523–1533. doi: 10.1161/01.atv.18.10.1523. [DOI] [PubMed] [Google Scholar]
  11. Chen C. S., Bach G., Pagano R. E. Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6373–6378. doi: 10.1073/pnas.95.11.6373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen C. S., Martin O. C., Pagano R. E. Changes in the spectral properties of a plasma membrane lipid analog during the first seconds of endocytosis in living cells. Biophys J. 1997 Jan;72(1):37–50. doi: 10.1016/S0006-3495(97)78645-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen C. S., Patterson M. C., Wheatley C. L., O'Brien J. F., Pagano R. E. Broad screening test for sphingolipid-storage diseases. Lancet. 1999 Sep 11;354(9182):901–905. doi: 10.1016/S0140-6736(98)10034-X. [DOI] [PubMed] [Google Scholar]
  14. Choudhury Amit, Dominguez Michel, Puri Vishwajeet, Sharma Deepak K., Narita Keishi, Wheatley Christine L., Marks David L., Pagano Richard E. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest. 2002 Jun;109(12):1541–1550. doi: 10.1172/JCI15420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gieselmann Volkmar, Matzner Ulrich, Klein Diana, Mansson Jan Eric, D'Hooge Rudi, DeDeyn Peter D., Lüllmann Rauch Renate, Hartmann Dieter, Harzer Klaus. Gene therapy: prospects for glycolipid storage diseases. Philos Trans R Soc Lond B Biol Sci. 2003 May 29;358(1433):921–925. doi: 10.1098/rstb.2003.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hakomori Si Sen-itiroh. The glycosynapse. Proc Natl Acad Sci U S A. 2002 Jan 2;99(1):225–232. doi: 10.1073/pnas.012540899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hannun Y. A., Luberto C., Argraves K. M. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry. 2001 Apr 24;40(16):4893–4903. doi: 10.1021/bi002836k. [DOI] [PubMed] [Google Scholar]
  18. Johannes Ludger, Lamaze Christophe. Clathrin-dependent or not: is it still the question? Traffic. 2002 Jul;3(7):443–451. doi: 10.1034/j.1600-0854.2002.30701.x. [DOI] [PubMed] [Google Scholar]
  19. Ko D. C., Gordon M. D., Jin J. Y., Scott M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol Biol Cell. 2001 Mar;12(3):601–614. doi: 10.1091/mbc.12.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi T., Beuchat M. H., Lindsay M., Frias S., Palmiter R. D., Sakuraba H., Parton R. G., Gruenberg J. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol. 1999 Jun;1(2):113–118. doi: 10.1038/10084. [DOI] [PubMed] [Google Scholar]
  21. Kolesnick R. N., Goñi F. M., Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol. 2000 Sep;184(3):285–300. doi: 10.1002/1097-4652(200009)184:3<285::AID-JCP2>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  22. Liu P., Anderson R. G. Spatial organization of EGF receptor transmodulation by PDGF. Biochem Biophys Res Commun. 1999 Aug 11;261(3):695–700. doi: 10.1006/bbrc.1999.1082. [DOI] [PubMed] [Google Scholar]
  23. Neufeld E. B., Wastney M., Patel S., Suresh S., Cooney A. M., Dwyer N. K., Roff C. F., Ohno K., Morris J. A., Carstea E. D. The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem. 1999 Apr 2;274(14):9627–9635. doi: 10.1074/jbc.274.14.9627. [DOI] [PubMed] [Google Scholar]
  24. Nichols B. J., Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol. 2001 Oct;11(10):406–412. doi: 10.1016/s0962-8924(01)02107-9. [DOI] [PubMed] [Google Scholar]
  25. Orlandi P. A., Fishman P. H. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 1998 May 18;141(4):905–915. doi: 10.1083/jcb.141.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pagano R. E., Martin O. C., Kang H. C., Haugland R. P. A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor. J Cell Biol. 1991 Jun;113(6):1267–1279. doi: 10.1083/jcb.113.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parton R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem. 1994 Feb;42(2):155–166. doi: 10.1177/42.2.8288861. [DOI] [PubMed] [Google Scholar]
  28. Prasad A., Kaye E. M., Alroy J. Electron microscopic examination of skin biopsy as a cost-effective tool in the diagnosis of lysosomal storage diseases. J Child Neurol. 1996 Jul;11(4):301–308. doi: 10.1177/088307389601100408. [DOI] [PubMed] [Google Scholar]
  29. Puri V., Watanabe R., Dominguez M., Sun X., Wheatley C. L., Marks D. L., Pagano R. E. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol. 1999 Oct;1(6):386–388. doi: 10.1038/14084. [DOI] [PubMed] [Google Scholar]
  30. Puri V., Watanabe R., Singh R. D., Dominguez M., Brown J. C., Wheatley C. L., Marks D. L., Pagano R. E. Clathrin-dependent and -independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol. 2001 Jul 30;154(3):535–547. doi: 10.1083/jcb.200102084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G. Caveolin, a protein component of caveolae membrane coats. Cell. 1992 Feb 21;68(4):673–682. doi: 10.1016/0092-8674(92)90143-z. [DOI] [PubMed] [Google Scholar]
  32. Sabharanjak Shefali, Sharma Pranav, Parton Robert G., Mayor Satyajit. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell. 2002 Apr;2(4):411–423. doi: 10.1016/s1534-5807(02)00145-4. [DOI] [PubMed] [Google Scholar]
  33. Schiffmann Raphael, Brady Roscoe O. New prospects for the treatment of lysosomal storage diseases. Drugs. 2002;62(5):733–742. doi: 10.2165/00003495-200262050-00002. [DOI] [PubMed] [Google Scholar]
  34. Schwarze S. R., Ho A., Vocero-Akbani A., Dowdy S. F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999 Sep 3;285(5433):1569–1572. doi: 10.1126/science.285.5433.1569. [DOI] [PubMed] [Google Scholar]
  35. Shayman J. A. Sphingolipids. Kidney Int. 2000 Jul;58(1):11–26. doi: 10.1046/j.1523-1755.2000.00136.x. [DOI] [PubMed] [Google Scholar]
  36. Shogomori H., Futerman A. H. Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J Biol Chem. 2000 Dec 11;276(12):9182–9188. doi: 10.1074/jbc.M009414200. [DOI] [PubMed] [Google Scholar]
  37. Sillence Dan J., Puri Vishwajeet, Marks David L., Butters Terry D., Dwek Raymond A., Pagano Richard E., Platt Frances M. Glucosylceramide modulates membrane traffic along the endocytic pathway. J Lipid Res. 2002 Nov;43(11):1837–1845. doi: 10.1194/jlr.m200232-jlr200. [DOI] [PubMed] [Google Scholar]
  38. Slotte J. P., Ostman A. L., Kumar E. R., Bittman R. Cholesterol interacts with lactosyl and maltosyl cerebrosides but not with glucosyl or galactosyl cerebrosides in mixed monolayers. Biochemistry. 1993 Aug 10;32(31):7886–7892. doi: 10.1021/bi00082a008. [DOI] [PubMed] [Google Scholar]
  39. Spiegel Sarah, English Denis, Milstien Sheldon. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 2002 May;12(5):236–242. doi: 10.1016/s0962-8924(02)02277-8. [DOI] [PubMed] [Google Scholar]
  40. Wang T. Y., Silvius J. R. Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophys J. 2000 Sep;79(3):1478–1489. doi: 10.1016/S0006-3495(00)76399-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES