Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jun 29;358(1434):1149–1155. doi: 10.1098/rstb.2003.1305

Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids?

Luca Comai 1, Andreas Madlung 1, Caroline Josefsson 1, Anand Tyagi 1
PMCID: PMC1693194  PMID: 12831481

Abstract

Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol. 2000 Jun;43(2-3):387–399. doi: 10.1023/a:1006480722854. [DOI] [PubMed] [Google Scholar]
  2. Comai L., Tyagi A. P., Winter K., Holmes-Davis R., Reynolds S. H., Stevens Y., Byers B. Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell. 2000 Sep;12(9):1551–1568. doi: 10.1105/tpc.12.9.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Comai Luca, Tyagi Anand P., Lysak Martin A. FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res. 2003;11(3):217–226. doi: 10.1023/a:1022883709060. [DOI] [PubMed] [Google Scholar]
  4. Gaut B. S., Le Thierry d'Ennequin M., Peek A. S., Sawkins M. C. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7008–7015. doi: 10.1073/pnas.97.13.7008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamdi H. K., Nishio H., Tavis J., Zielinski R., Dugaiczyk A. Alu-mediated phylogenetic novelties in gene regulation and development. J Mol Biol. 2000 Jun 16;299(4):931–939. doi: 10.1006/jmbi.2000.3795. [DOI] [PubMed] [Google Scholar]
  6. Jacobsen S. E., Meyerowitz E. M. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science. 1997 Aug 22;277(5329):1100–1103. doi: 10.1126/science.277.5329.1100. [DOI] [PubMed] [Google Scholar]
  7. Kamm A., Galasso I., Schmidt T., Heslop-Harrison J. S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol. 1995 Mar;27(5):853–862. doi: 10.1007/BF00037014. [DOI] [PubMed] [Google Scholar]
  8. Kashkush Khalil, Feldman Moshe, Levy Avraham A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002 Apr;160(4):1651–1659. doi: 10.1093/genetics/160.4.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kashkush Khalil, Feldman Moshe, Levy Avraham A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet. 2002 Dec 16;33(1):102–106. doi: 10.1038/ng1063. [DOI] [PubMed] [Google Scholar]
  10. Lee H. S., Chen Z. J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci U S A. 2001 May 22;98(12):6753–6758. doi: 10.1073/pnas.121064698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu B., Brubaker C. L., Mergeai G., Cronn R. C., Wendel J. F. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome. 2001 Jun;44(3):321–330. [PubMed] [Google Scholar]
  12. Madlung Andreas, Masuelli Ricardo W., Watson Brian, Reynolds Steve H., Davison Jerry, Comai Luca. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol. 2002 Jun;129(2):733–746. doi: 10.1104/pp.003095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martienssen R. Transposons, DNA methylation and gene control. Trends Genet. 1998 Jul;14(7):263–264. doi: 10.1016/s0168-9525(98)01518-2. [DOI] [PubMed] [Google Scholar]
  14. Matzke Marjori A., Aufsatz Werner, Kanno Tatsuo, Mette M. Florian, Matzke Antonius J. M. Homology-dependent gene silencing and host defense in plants. Adv Genet. 2002;46:235–275. doi: 10.1016/s0065-2660(02)46009-9. [DOI] [PubMed] [Google Scholar]
  15. McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
  16. McDonald J. F., Matyunina L. V., Wilson S., Jordan I. K., Bowen N. J., Miller W. J. LTR retrotransposons and the evolution of eukaryotic enhancers. Genetica. 1997;100(1-3):3–13. [PubMed] [Google Scholar]
  17. Melquist S., Luff B., Bender J. Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics. 1999 Sep;153(1):401–413. doi: 10.1093/genetics/153.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mette M. F., Aufsatz W., van der Winden J., Matzke M. A., Matzke A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000 Oct 2;19(19):5194–5201. doi: 10.1093/emboj/19.19.5194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Neill R. J., O'Neill M. J., Graves J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature. 1998 May 7;393(6680):68–72. doi: 10.1038/29985. [DOI] [PubMed] [Google Scholar]
  20. Orr H. A., Presgraves D. C. Speciation by postzygotic isolation: forces, genes and molecules. Bioessays. 2000 Dec;22(12):1085–1094. doi: 10.1002/1521-1878(200012)22:12<1085::AID-BIES6>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  21. Osborn Thomas C., Pires J. Chris, Birchler James A., Auger Donald L., Chen Z. Jeffery, Lee Hyeon-Se, Comai Luca, Madlung Andreas, Doerge R. W., Colot Vincent. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 2003 Mar;19(3):141–147. doi: 10.1016/s0168-9525(03)00015-5. [DOI] [PubMed] [Google Scholar]
  22. Ozkan H., Feldman M. Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina. Genome. 2001 Dec;44(6):1000–1006. [PubMed] [Google Scholar]
  23. Ozkan H., Levy A. A., Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell. 2001 Aug;13(8):1735–1747. doi: 10.1105/TPC.010082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pal-Bhadra Manika, Bhadra Utpal, Birchler James A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell. 2002 Feb;9(2):315–327. doi: 10.1016/s1097-2765(02)00440-9. [DOI] [PubMed] [Google Scholar]
  25. Pikaard CS. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 1999 Dec;4(12):478–483. doi: 10.1016/s1360-1385(99)01501-0. [DOI] [PubMed] [Google Scholar]
  26. Queitsch Christine, Sangster Todd A., Lindquist Susan. Hsp90 as a capacitor of phenotypic variation. Nature. 2002 May 12;417(6889):618–624. doi: 10.1038/nature749. [DOI] [PubMed] [Google Scholar]
  27. Rieseberg L. H. Polyploid evolution: keeping the peace at genomic reunions. Curr Biol. 2001 Nov 13;11(22):R925–R928. doi: 10.1016/s0960-9822(01)00556-5. [DOI] [PubMed] [Google Scholar]
  28. Rutherford S. L., Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998 Nov 26;396(6709):336–342. doi: 10.1038/24550. [DOI] [PubMed] [Google Scholar]
  29. Schranz M. E., Osborn T. C. Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered. 2000 May-Jun;91(3):242–246. doi: 10.1093/jhered/91.3.242. [DOI] [PubMed] [Google Scholar]
  30. Shaked H., Kashkush K., Ozkan H., Feldman M., Levy A. A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001 Aug;13(8):1749–1759. doi: 10.1105/TPC.010083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sollars Vincent, Lu Xiangyi, Xiao Li, Wang Xiaoyan, Garfinkel Mark D., Ruden Douglas M. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2002 Dec 16;33(1):70–74. doi: 10.1038/ng1067. [DOI] [PubMed] [Google Scholar]
  32. Soltis D. E., Soltis P. S. The dynamic nature of polyploid genomes. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8089–8091. doi: 10.1073/pnas.92.18.8089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Talbert Paul B., Masuelli Ricardo, Tyagi Anand P., Comai Luca, Henikoff Steven. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002 May;14(5):1053–1066. doi: 10.1105/tpc.010425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vaucheret H., Béclin C., Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci. 2001 Sep;114(Pt 17):3083–3091. doi: 10.1242/jcs.114.17.3083. [DOI] [PubMed] [Google Scholar]
  35. Volpe Thomas A., Kidner Catherine, Hall Ira M., Teng Grace, Grewal Shiv I. S., Martienssen Robert A. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002 Aug 22;297(5588):1833–1837. doi: 10.1126/science.1074973. [DOI] [PubMed] [Google Scholar]
  36. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  37. van Steensel B., Delrow J., Henikoff S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet. 2001 Mar;27(3):304–308. doi: 10.1038/85871. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES