Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Jun 29;358(1434):991–1004. doi: 10.1098/rstb.2003.1301

Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond.

Spencer C H Barrett 1
PMCID: PMC1693196  PMID: 12831464

Abstract

Comparisons of the causes and consequences of cross- and self-fertilization have dominated research on plant mating since Darwin's seminal work on plant reproduction. Here, I provide examples of these accomplishments, but also illustrate new approaches that emphasize the role of floral design and display in pollen dispersal and fitness gain through male function. Wide variation in outcrossing rate characterizes animal-pollinated plants. In species with large floral displays, part of the selfing component of mixed mating can arise from geitonogamy and be maladaptive because of strong inbreeding depression and pollen discounting. Floral strategies that separate the benefits of floral display from the mating costs associated with geitonogamy can resolve these conflicts by reducing lost mating opportunities through male function. The results from experiments with marker genes and floral manipulations provide evidence for the function of herkogamy and dichogamy in reducing self-pollination and promoting pollen dispersal. Evidence is also presented indicating that increased selfing resulting from changes to floral design, or geitonogamy in large clones, can act as a stimulus for the evolution of dioecy. The scope of future research on mating strategies needs to be broadened to include investigations of functional links among flowers, inflorescences and plant architecture within the framework of life-history evolution.

Full Text

The Full Text of this article is available as a PDF (178.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER H. G. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb Symp Quant Biol. 1959;24:177–191. doi: 10.1101/sqb.1959.024.01.019. [DOI] [PubMed] [Google Scholar]
  2. Barrett S. C. H. Sexual interference of the floral kind. Heredity (Edinb) 2002 Feb;88(2):154–159. doi: 10.1038/sj.hdy.6800020. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth D., Wright S. I. Breeding systems and genome evolution. Curr Opin Genet Dev. 2001 Dec;11(6):685–690. doi: 10.1016/s0959-437x(00)00254-9. [DOI] [PubMed] [Google Scholar]
  4. Cheptou Pierre-Olivier, Dieckmann Ulf. The evolution of self-fertilization in density-regulated populations. Proc Biol Sci. 2002 Jun 7;269(1496):1177–1186. doi: 10.1098/rspb.2002.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorken Marcel E., Friedman Jannice, Barrett Spencer C. H. The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution. 2002 Jan;56(1):31–41. doi: 10.1111/j.0014-3820.2002.tb00847.x. [DOI] [PubMed] [Google Scholar]
  6. Dorken Marcel E., Friedman Jannice, Barrett Spencer C. H. The evolution and maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution. 2002 Jan;56(1):31–41. doi: 10.1111/j.0014-3820.2002.tb00847.x. [DOI] [PubMed] [Google Scholar]
  7. Fetscher A. E. Resolution of male-female conflict in an hermaphroditic flower. Proc Biol Sci. 2001 Mar 7;268(1466):525–529. doi: 10.1098/rspb.2000.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerber S., Mariette S., Streiff R., Bodénès C., Kremer A. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol. 2000 Aug;9(8):1037–1048. doi: 10.1046/j.1365-294x.2000.00961.x. [DOI] [PubMed] [Google Scholar]
  9. Griffin S. R., Mavraganis K., Eckert C. G. Experimental analysis of protogyny in Aquilegia canadensis (Ranunculaceae). Am J Bot. 2000 Sep;87(9):1246–1256. [PubMed] [Google Scholar]
  10. Harder L. D., Barrett S. C., Cole W. W. The mating consequences of sexual segregation within inflorescences of flowering plants. Proc Biol Sci. 2000 Feb 22;267(1441):315–320. doi: 10.1098/rspb.2000.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herlihy Christopher R., Eckert Christopher G. Genetic cost of reproductive assurance in a self-fertilizing plant. Nature. 2002 Mar 21;416(6878):320–323. doi: 10.1038/416320a. [DOI] [PubMed] [Google Scholar]
  12. Ingvarsson Pär K. A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution. 2002 Dec;56(12):2368–2373. doi: 10.1111/j.0014-3820.2002.tb00162.x. [DOI] [PubMed] [Google Scholar]
  13. Jesson Linley K., Barrett Spencer C. H. Solving the puzzle of mirror-image flowers. Nature. 2002 Jun 13;417(6890):707–707. doi: 10.1038/417707a. [DOI] [PubMed] [Google Scholar]
  14. Jesson Linley K., Barrett Spencer C. H. The genetics of mirror-image flowers. Proc Biol Sci. 2002 Sep 7;269(1502):1835–1839. doi: 10.1098/rspb.2002.2068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson SD, Steiner KE. Generalization versus specialization in plant pollination systems. Trends Ecol Evol. 2000 Apr;15(4):140–143. doi: 10.1016/s0169-5347(99)01811-x. [DOI] [PubMed] [Google Scholar]
  16. Morgan M. T., Conner J. K. Using genetic markers to directly estimate male selection gradients. Evolution. 2001 Feb;55(2):272–281. doi: 10.1111/j.0014-3820.2001.tb01292.x. [DOI] [PubMed] [Google Scholar]
  17. Morgan M. T. Consequences of life history for inbreeding depression and mating system evolution in plants. Proc Biol Sci. 2001 Sep 7;268(1478):1817–1824. doi: 10.1098/rspb.2001.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reusch T. B. Pollination in the marine realm: microsatellites reveal high outcrossing rates and multiple paternity in eelgrass Zostera marina. Heredity (Edinb) 2000 Nov;85(Pt 5):459–464. doi: 10.1046/j.1365-2540.2000.00783.x. [DOI] [PubMed] [Google Scholar]
  19. Ritland Kermit. Extensions of models for the estimation of mating systems using n independent loci. Heredity (Edinb) 2002 Apr;88(4):221–228. doi: 10.1038/sj.hdy.6800029. [DOI] [PubMed] [Google Scholar]
  20. Routley Matthew B., Husband Brian C. The effect of protandry on siring success in Chamerion angustifolium (Onagraceae) with different inflorescence sizes. Evolution. 2003 Feb;57(2):240–248. doi: 10.1111/j.0014-3820.2003.tb00259.x. [DOI] [PubMed] [Google Scholar]
  21. Thompson John D., Barrett Spencer C. H., Baker Angela M. Frequency-dependent variation in reproductive success in Narcissus: implications for the maintenance of stigma-height dimorphism. Proc Biol Sci. 2003 May 7;270(1518):949–953. doi: 10.1098/rspb.2002.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vogler D. W., Kalisz S. Sex among the flowers: the distribution of plant mating systems. Evolution. 2001 Jan;55(1):202–204. doi: 10.1111/j.0014-3820.2001.tb01285.x. [DOI] [PubMed] [Google Scholar]
  23. Worley A. C., Barrett S. C. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): direct and correlated responses to selection on flower size and number. Evolution. 2000 Oct;54(5):1533–1545. doi: 10.1111/j.0014-3820.2000.tb00699.x. [DOI] [PubMed] [Google Scholar]
  24. Worley AC, Baker AM, Thompson JD, Barrett SC. Floral Display in Narcissus: Variation in Flower Size and Number at the Species, Population, and Individual Levels. Int J Plant Sci. 2000 Jan;161(1):69–79. doi: 10.1086/314225. [DOI] [PubMed] [Google Scholar]
  25. Worley Anne C., Houle David, Barrett Spencer C. H. Consequences of hierarchical allocation for the evolution of life-history traits. Am Nat. 2002 Dec 30;161(1):153–167. doi: 10.1086/345461. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES