Abstract
Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo-overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations.
Full Text
The Full Text of this article is available as a PDF (277.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett S. C., Charlesworth D. Effects of a change in the level of inbreeding on the genetic load. Nature. 1991 Aug 8;352(6335):522–524. doi: 10.1038/352522a0. [DOI] [PubMed] [Google Scholar]
- Bustamante Carlos D., Nielsen Rasmus, Sawyer Stanley A., Olsen Kenneth M., Purugganan Michael D., Hartl Daniel L. The cost of inbreeding in Arabidopsis. Nature. 2002 Apr 4;416(6880):531–534. doi: 10.1038/416531a. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
- Cockerham C. C., Zeng Z. B. Design III with marker loci. Genetics. 1996 Jul;143(3):1437–1456. doi: 10.1093/genetics/143.3.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crnokrak Peter, Barrett Spencer C. H. Perspective: purging the genetic load: a review of the experimental evidence. Evolution. 2002 Dec;56(12):2347–2358. doi: 10.1111/j.0014-3820.2002.tb00160.x. [DOI] [PubMed] [Google Scholar]
- Davenport C. B. DEGENERATION, ALBINISM AND INBREEDING. Science. 1908 Oct 2;28(718):454–455. doi: 10.1126/science.28.718.454-b. [DOI] [PubMed] [Google Scholar]
- David P. Heterozygosity-fitness correlations: new perspectives on old problems. Heredity (Edinb) 1998 May;80(Pt 5):531–537. doi: 10.1046/j.1365-2540.1998.00393.x. [DOI] [PubMed] [Google Scholar]
- Deng H. W. Estimating within-locus nonadditive coefficient and discriminating dominance versus overdominance as the genetic cause of heterosis. Genetics. 1998 Apr;148(4):2003–2014. doi: 10.1093/genetics/148.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doherty P. C., Zinkernagel R. M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature. 1975 Jul 3;256(5512):50–52. doi: 10.1038/256050a0. [DOI] [PubMed] [Google Scholar]
- Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–327. doi: 10.1146/annurev.ge.29.120195.001513. [DOI] [PubMed] [Google Scholar]
- Fu Y. B., Ritland K. Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus. Genetics. 1994 Jan;136(1):323–331. doi: 10.1093/genetics/136.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu Y. B., Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression. Genetics. 1996 Sep;144(1):339–348. doi: 10.1093/genetics/144.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedrick Philip W. Pathogen resistance and genetic variation at MHC loci. Evolution. 2002 Oct;56(10):1902–1908. doi: 10.1111/j.0014-3820.2002.tb00116.x. [DOI] [PubMed] [Google Scholar]
- Johnston M. O., Schoen D. J. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995 Jan 13;267(5195):226–229. doi: 10.1126/science.267.5195.226. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Muller's ratchet under epistatic selection. Genetics. 1994 Apr;136(4):1469–1473. doi: 10.1093/genetics/136.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo L. J., Li Z. K., Mei H. W., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W., Khush G. S., Paterson A. H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics. 2001 Aug;158(4):1755–1771. doi: 10.1093/genetics/158.4.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch M. Design and analysis of experiments on random drift and inbreeding depression. Genetics. 1988 Nov;120(3):791–807. doi: 10.1093/genetics/120.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackay T. F. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. [DOI] [PubMed] [Google Scholar]
- Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics. 1995 Jul;140(3):1105–1109. doi: 10.1093/genetics/140.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Remington D. L., O'Malley D. M. Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution. 2000 Oct;54(5):1580–1589. doi: 10.1111/j.0014-3820.2000.tb00703.x. [DOI] [PubMed] [Google Scholar]
- Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuber C. W., Lincoln S. E., Wolff D. W., Helentjaris T., Lander E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992 Nov;132(3):823–839. doi: 10.1093/genetics/132.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uyenoyama M. K., Waller D. M. Coevolution of self-fertilization and inbreeding depression. II. Symmetric overdominance in viability. Theor Popul Biol. 1991 Aug;40(1):47–77. doi: 10.1016/0040-5809(91)90046-i. [DOI] [PubMed] [Google Scholar]
- Vogl C., Xu S. Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics. 2000 Jul;155(3):1439–1447. doi: 10.1093/genetics/155.3.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogler D. W., Kalisz S. Sex among the flowers: the distribution of plant mating systems. Evolution. 2001 Jan;55(1):202–204. doi: 10.1111/j.0014-3820.2001.tb01285.x. [DOI] [PubMed] [Google Scholar]
- Vuylsteke M., Kuiper M., Stam P. Chromosomal regions involved in hybrid performance and heterosis: their AFLP(R)-based identification and practical use in prediction models. Heredity (Edinb) 2000 Sep;85(Pt 3):208–218. doi: 10.1046/j.1365-2540.2000.00747.x. [DOI] [PubMed] [Google Scholar]
- Wang J., Hill W. G., Charlesworth D., Charlesworth B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet Res. 1999 Oct;74(2):165–178. doi: 10.1017/s0016672399003900. [DOI] [PubMed] [Google Scholar]
- Weir B. S., Cockerham C. C. Mixed self and random mating at two loci. Genet Res. 1973 Jun;21(3):247–262. doi: 10.1017/s0016672300013446. [DOI] [PubMed] [Google Scholar]
- Willis J. H. Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics. 1999 Dec;153(4):1885–1898. doi: 10.1093/genetics/153.4.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willis J. H. The contribution of male-sterility mutations to inbreeding depression in Mimulus guttatus. Heredity (Edinb) 1999 Sep;83(Pt 3):337–346. doi: 10.1038/sj.hdy.6885790. [DOI] [PubMed] [Google Scholar]
- Wright S. Systems of Mating. II. the Effects of Inbreeding on the Genetic Composition of a Population. Genetics. 1921 Mar;6(2):124–143. doi: 10.1093/genetics/6.2.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao J., Li J., Yuan L., Tanksley S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Q., Saghai Maroof M. A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226–9231. doi: 10.1073/pnas.94.17.9226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziehe M., Roberds J. H. Inbreeding depression due to overdominance in partially self-fertilizing plant populations. Genetics. 1989 Apr;121(4):861–868. doi: 10.1093/genetics/121.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]