Abstract
Evolution might have set the basic foundations for abstract mental representation long ago. Because of language, mental abilities would have reached different degrees of sophistication in mammals and in humans but would be, essentially, of the same nature. Thus, humans and animals might rely on the same basic mechanisms that could be masked in humans by the use of sophisticated strategies. In this paper, monkey and human abilities are compared in a variety of perceptual tasks including visual categorization to assess behavioural similarities and dissimilarities, and to determine the level of abstraction of monkeys' mental representations. The question of how these abstract representations might be encoded in the brain is then addressed. A comparative study of the neural processing underlying abstract cognitive operations in animals and humans might help to understand when abstraction emerged in the phylogenetic scale, and how it increased in complexity.
Full Text
The Full Text of this article is available as a PDF (901.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Booth M. C., Rolls E. T. View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex. 1998 Sep;8(6):510–523. doi: 10.1093/cercor/8.6.510. [DOI] [PubMed] [Google Scholar]
- Bovet D., Vauclair J. Judgment of conceptual identity in monkeys. Psychon Bull Rev. 2001 Sep;8(3):470–475. doi: 10.3758/bf03196181. [DOI] [PubMed] [Google Scholar]
- Brannon E. M., Terrace H. S. Ordering of the numerosities 1 to 9 by monkeys. Science. 1998 Oct 23;282(5389):746–749. doi: 10.1126/science.282.5389.746. [DOI] [PubMed] [Google Scholar]
- Bruce C., Desimone R., Gross C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol. 1981 Aug;46(2):369–384. doi: 10.1152/jn.1981.46.2.369. [DOI] [PubMed] [Google Scholar]
- Davenport R. K., Rogers C. M. Intermodal equivalence of stimuli in apes. Science. 1970 Apr 10;168(3928):279–280. doi: 10.1126/science.168.3928.279. [DOI] [PubMed] [Google Scholar]
- Dehaene Stanislas. Neuroscience. Single-neuron arithmetic. Science. 2002 Sep 6;297(5587):1652–1653. doi: 10.1126/science.1076392. [DOI] [PubMed] [Google Scholar]
- Delorme A., Richard G., Fabre-Thorpe M. Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Res. 2000;40(16):2187–2200. doi: 10.1016/s0042-6989(00)00083-3. [DOI] [PubMed] [Google Scholar]
- Elliott R. C. Cross-modal recognition in three primates. Neuropsychologia. 1977;15(1):183–186. doi: 10.1016/0028-3932(77)90129-4. [DOI] [PubMed] [Google Scholar]
- Fabre-Thorpe M., Delorme A., Marlot C., Thorpe S. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J Cogn Neurosci. 2001 Feb 15;13(2):171–180. doi: 10.1162/089892901564234. [DOI] [PubMed] [Google Scholar]
- Fabre-Thorpe M., Richard G., Thorpe S. J. Rapid categorization of natural images by rhesus monkeys. Neuroreport. 1998 Jan 26;9(2):303–308. doi: 10.1097/00001756-199801260-00023. [DOI] [PubMed] [Google Scholar]
- Freedman D. J., Riesenhuber M., Poggio T., Miller E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001 Jan 12;291(5502):312–316. doi: 10.1126/science.291.5502.312. [DOI] [PubMed] [Google Scholar]
- HERRNSTEIN R. J., LOVELAND D. H. COMPLEX VISUAL CONCEPT IN THE PIGEON. Science. 1964 Oct 23;146(3643):549–551. doi: 10.1126/science.146.3643.549. [DOI] [PubMed] [Google Scholar]
- Hasegawa Isao, Miyashita Yasushi. Categorizing the world: expert neurons look into key features. Nat Neurosci. 2002 Feb;5(2):90–91. doi: 10.1038/nn0202-90. [DOI] [PubMed] [Google Scholar]
- Jolicoeur P., Gluck M. A., Kosslyn S. M. Pictures and names: making the connection. Cogn Psychol. 1984 Apr;16(2):243–275. doi: 10.1016/0010-0285(84)90009-4. [DOI] [PubMed] [Google Scholar]
- Kreiman G., Koch C., Fried I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci. 2000 Sep;3(9):946–953. doi: 10.1038/78868. [DOI] [PubMed] [Google Scholar]
- Logothetis N. K., Pauls J., Bülthoff H. H., Poggio T. View-dependent object recognition by monkeys. Curr Biol. 1994 May 1;4(5):401–414. doi: 10.1016/s0960-9822(00)00089-0. [DOI] [PubMed] [Google Scholar]
- Logothetis N. K., Pauls J., Poggio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol. 1995 May 1;5(5):552–563. doi: 10.1016/s0960-9822(95)00108-4. [DOI] [PubMed] [Google Scholar]
- Martin-Malivel J., Fagot J. Cross-modal integration and conceptual categorization in baboons. Behav Brain Res. 2001 Aug 1;122(2):209–213. doi: 10.1016/s0166-4328(01)00179-6. [DOI] [PubMed] [Google Scholar]
- Moyer R. S., Landauer T. K. Time required for judgements of numerical inequality. Nature. 1967 Sep 30;215(5109):1519–1520. doi: 10.1038/2151519a0. [DOI] [PubMed] [Google Scholar]
- Nieder Andreas, Freedman David J., Miller Earl K. Representation of the quantity of visual items in the primate prefrontal cortex. Science. 2002 Sep 6;297(5587):1708–1711. doi: 10.1126/science.1072493. [DOI] [PubMed] [Google Scholar]
- Orlov T., Yakovlev V., Hochstein S., Zohary E. Macaque monkeys categorize images by their ordinal number. Nature. 2000 Mar 2;404(6773):77–80. doi: 10.1038/35003571. [DOI] [PubMed] [Google Scholar]
- Perrett D. I., Rolls E. T., Caan W. Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res. 1982;47(3):329–342. doi: 10.1007/BF00239352. [DOI] [PubMed] [Google Scholar]
- Schrier A. M., Brady P. M. Categorization of natural stimuli by monkeys (Macaca mulatta): effects of stimulus set size and modification of exemplars. J Exp Psychol Anim Behav Process. 1987 Apr;13(2):136–143. [PubMed] [Google Scholar]
- Seyfarth R. M., Cheney D. L., Marler P. Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science. 1980 Nov 14;210(4471):801–803. doi: 10.1126/science.7433999. [DOI] [PubMed] [Google Scholar]
- Sheinberg D. L., Logothetis N. K. Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J Neurosci. 2001 Feb 15;21(4):1340–1350. doi: 10.1523/JNEUROSCI.21-04-01340.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shidara Munetaka, Richmond Barry J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science. 2002 May 31;296(5573):1709–1711. doi: 10.1126/science.1069504. [DOI] [PubMed] [Google Scholar]
- Sigala Natasha, Logothetis Nikos K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature. 2002 Jan 17;415(6869):318–320. doi: 10.1038/415318a. [DOI] [PubMed] [Google Scholar]
- Thorpe S. J., Fabre-Thorpe M. Neuroscience. Seeking categories in the brain. Science. 2001 Jan 12;291(5502):260–263. doi: 10.1126/science.1058249. [DOI] [PubMed] [Google Scholar]
- Thorpe S. J., Gegenfurtner K. R., Fabre-Thorpe M., Bülthoff H. H. Detection of animals in natural images using far peripheral vision. Eur J Neurosci. 2001 Sep;14(5):869–876. doi: 10.1046/j.0953-816x.2001.01717.x. [DOI] [PubMed] [Google Scholar]
- Thorpe S., Fize D., Marlot C. Speed of processing in the human visual system. Nature. 1996 Jun 6;381(6582):520–522. doi: 10.1038/381520a0. [DOI] [PubMed] [Google Scholar]
- Vogels R. Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. Eur J Neurosci. 1999 Apr;11(4):1239–1255. doi: 10.1046/j.1460-9568.1999.00531.x. [DOI] [PubMed] [Google Scholar]
- Weiskrantz L., Cowey A. Cross-modal matching in the rhesus monkey using a single pair of stimuli. Neuropsychologia. 1975 Sep;13(3):257–261. doi: 10.1016/0028-3932(75)90001-9. [DOI] [PubMed] [Google Scholar]