Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2003 Aug 29;358(1436):1317–1329. doi: 10.1098/rstb.2003.1325

The origin of dorsoventral polarity in Drosophila.

Siegfried Roth 1
PMCID: PMC1693232  PMID: 14511478

Abstract

In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo.

Full Text

The Full Text of this article is available as a PDF (1,008.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brendza Robert P., Serbus Laura R., Saxton William M., Duffy Joseph B. Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes. Curr Biol. 2002 Sep 3;12(17):1541–1545. doi: 10.1016/s0960-9822(02)01108-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casci T., Vinós J., Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell. 1999 Mar 5;96(5):655–665. doi: 10.1016/s0092-8674(00)80576-0. [DOI] [PubMed] [Google Scholar]
  3. Cha B. J., Koppetsch B. S., Theurkauf W. E. In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell. 2001 Jul 13;106(1):35–46. doi: 10.1016/s0092-8674(01)00419-6. [DOI] [PubMed] [Google Scholar]
  4. Cha Byeong-Jik, Serbus Laura R., Koppetsch Birgit S., Theurkauf William E. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol. 2002 Aug;4(8):592–598. doi: 10.1038/ncb832. [DOI] [PubMed] [Google Scholar]
  5. Chen G., Handel K., Roth S. The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development. 2000 Dec;127(23):5145–5156. doi: 10.1242/dev.127.23.5145. [DOI] [PubMed] [Google Scholar]
  6. Cohen Robert S. Oocyte patterning: dynein and kinesin, inc. Curr Biol. 2002 Dec 10;12(23):R797–R799. doi: 10.1016/s0960-9822(02)01310-6. [DOI] [PubMed] [Google Scholar]
  7. DeLotto Y., DeLotto R. Proteolytic processing of the Drosophila Spätzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev. 1998 Mar;72(1-2):141–148. doi: 10.1016/s0925-4773(98)00024-0. [DOI] [PubMed] [Google Scholar]
  8. Dissing M., Giordano H., DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J. 2001 May 15;20(10):2387–2393. doi: 10.1093/emboj/20.10.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duncan Jason E., Warrior Rahul. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr Biol. 2002 Dec 10;12(23):1982–1991. doi: 10.1016/s0960-9822(02)01303-9. [DOI] [PubMed] [Google Scholar]
  10. Ferguson E. L. Conservation of dorsal-ventral patterning in arthropods and chordates. Curr Opin Genet Dev. 1996 Aug;6(4):424–431. doi: 10.1016/s0959-437x(96)80063-3. [DOI] [PubMed] [Google Scholar]
  11. Ghiglione C., Carraway K. L., 3rd, Amundadottir L. T., Boswell R. E., Perrimon N., Duffy J. B. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell. 1999 Mar 19;96(6):847–856. doi: 10.1016/s0092-8674(00)80594-2. [DOI] [PubMed] [Google Scholar]
  12. Ghiglione Christian, Bach Erika A., Paraiso Yolande, Carraway Kermit L., 3rd, Noselli Stéphane, Perrimon Norbert. Mechanism of activation of the Drosophila EGF Receptor by the TGFalpha ligand Gurken during oogenesis. Development. 2002 Jan;129(1):175–186. doi: 10.1242/dev.129.1.175. [DOI] [PubMed] [Google Scholar]
  13. Godt D., Tepass U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature. 1998 Sep 24;395(6700):387–391. doi: 10.1038/26493. [DOI] [PubMed] [Google Scholar]
  14. Golembo M., Schweitzer R., Freeman M., Shilo B. Z. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development. 1996 Jan;122(1):223–230. doi: 10.1242/dev.122.1.223. [DOI] [PubMed] [Google Scholar]
  15. González-Reyes A., Elliott H., St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature. 1995 Jun 22;375(6533):654–658. doi: 10.1038/375654a0. [DOI] [PubMed] [Google Scholar]
  16. González-Reyes A., St Johnston D. Role of oocyte position in establishment of anterior-posterior polarity in Drosophila. Science. 1994 Oct 28;266(5185):639–642. doi: 10.1126/science.7939717. [DOI] [PubMed] [Google Scholar]
  17. González-Reyes A., St Johnston D. The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development. 1998 Sep;125(18):3635–3644. doi: 10.1242/dev.125.18.3635. [DOI] [PubMed] [Google Scholar]
  18. Gross Steven P., Welte Michael A., Block Steven M., Wieschaus Eric F. Coordination of opposite-polarity microtubule motors. J Cell Biol. 2002 Feb 28;156(4):715–724. doi: 10.1083/jcb.200109047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guichard A., Roark M., Ronshaugen M., Bier E. brother of rhomboid, a rhomboid-related gene expressed during early Drosophila oogenesis, promotes EGF-R/MAPK signaling. Dev Biol. 2000 Oct 15;226(2):255–266. doi: 10.1006/dbio.2000.9851. [DOI] [PubMed] [Google Scholar]
  20. Guichet A., Peri F., Roth S. Stable anterior anchoring of the oocyte nucleus is required to establish dorsoventral polarity of the Drosophila egg. Dev Biol. 2001 Sep 1;237(1):93–106. doi: 10.1006/dbio.2001.0354. [DOI] [PubMed] [Google Scholar]
  21. Hashimoto C., Gerttula S., Anderson K. V. Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: importance of transmembrane signaling for dorsal-ventral pattern formation. Development. 1991 Apr;111(4):1021–1028. doi: 10.1242/dev.111.4.1021. [DOI] [PubMed] [Google Scholar]
  22. Hashimoto C., Hudson K. L., Anderson K. V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988 Jan 29;52(2):269–279. doi: 10.1016/0092-8674(88)90516-8. [DOI] [PubMed] [Google Scholar]
  23. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  24. Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
  25. James Karen E., Dorman Jennie B., Berg Celeste A. Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development. 2002 May;129(9):2209–2222. doi: 10.1242/dev.129.9.2209. [DOI] [PubMed] [Google Scholar]
  26. Januschke Jens, Gervais Louis, Dass Sajith, Kaltschmidt Julia A., Lopez-Schier Hernan, St Johnston Daniel, Brand Andrea H., Roth Siegfried, Guichet Antoine. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr Biol. 2002 Dec 10;12(23):1971–1981. doi: 10.1016/s0960-9822(02)01302-7. [DOI] [PubMed] [Google Scholar]
  27. Johnstone O., Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet. 2001;35:365–406. doi: 10.1146/annurev.genet.35.102401.090756. [DOI] [PubMed] [Google Scholar]
  28. Kleine T. O., Merten B. A procedure for the simultaneous determination of small quantities of hyaluronate and isomeric chondroitin sulfates by chondroitinases. Anal Biochem. 1981 Nov 15;118(1):185–190. doi: 10.1016/0003-2697(81)90176-7. [DOI] [PubMed] [Google Scholar]
  29. Koch E. A., Spitzer R. H. Multiple effects of colchicine on oogenesis in Drosophila: induced sterility and switch of potential oocyte to nurse-cell developmental pathway. Cell Tissue Res. 1983;228(1):21–32. doi: 10.1007/BF00206261. [DOI] [PubMed] [Google Scholar]
  30. Kramer S., Okabe M., Hacohen N., Krasnow M. A., Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development. 1999 Jun;126(11):2515–2525. doi: 10.1242/dev.126.11.2515. [DOI] [PubMed] [Google Scholar]
  31. Lall S., Patel N. H. Conservation and divergence in molecular mechanisms of axis formation. Annu Rev Genet. 2001;35:407–437. doi: 10.1146/annurev.genet.35.102401.090832. [DOI] [PubMed] [Google Scholar]
  32. LeMosy E. K., Tan Y. Q., Hashimoto C. Activation of a protease cascade involved in patterning the Drosophila embryo. Proc Natl Acad Sci U S A. 2001 Apr 10;98(9):5055–5060. doi: 10.1073/pnas.081026598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lee J. R., Urban S., Garvey C. F., Freeman M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell. 2001 Oct 19;107(2):161–171. doi: 10.1016/s0092-8674(01)00526-8. [DOI] [PubMed] [Google Scholar]
  34. Li M., McGrail M., Serr M., Hays T. S. Drosophila cytoplasmic dynein, a microtubule motor that is asymmetrically localized in the oocyte. J Cell Biol. 1994 Sep;126(6):1475–1494. doi: 10.1083/jcb.126.6.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. MacDougall Nina, Clark Alejandra, MacDougall Eilidh, Davis Ilan. Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell. 2003 Mar;4(3):307–319. doi: 10.1016/s1534-5807(03)00058-3. [DOI] [PubMed] [Google Scholar]
  36. Maxton-KuchenmeisterMaxton-Kü, Handel K., Schmidt-Ott U., Roth S., JackleJäckle H. Toll homologue expression in the beetle tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos. Mech Dev. 1999 May;83(1-2):107–114. doi: 10.1016/s0925-4773(99)00041-6. [DOI] [PubMed] [Google Scholar]
  37. Micklem D. R., Dasgupta R., Elliott H., Gergely F., Davidson C., Brand A., González-Reyes A., St Johnston D. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr Biol. 1997 Jul 1;7(7):468–478. doi: 10.1016/s0960-9822(06)00218-1. [DOI] [PubMed] [Google Scholar]
  38. Mizuguchi K., Parker J. S., Blundell T. L., Gay N. J. Getting knotted: a model for the structure and activation of Spätzle. Trends Biochem Sci. 1998 Jul;23(7):239–242. doi: 10.1016/s0968-0004(98)01216-x. [DOI] [PubMed] [Google Scholar]
  39. Montell D. J., Keshishian H., Spradling A. C. Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science. 1991 Oct 11;254(5029):290–293. doi: 10.1126/science.254.5029.290. [DOI] [PubMed] [Google Scholar]
  40. Morisato D., Anderson K. V. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet. 1995;29:371–399. doi: 10.1146/annurev.ge.29.120195.002103. [DOI] [PubMed] [Google Scholar]
  41. Morisato D., Anderson K. V. The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell. 1994 Feb 25;76(4):677–688. doi: 10.1016/0092-8674(94)90507-x. [DOI] [PubMed] [Google Scholar]
  42. Morisato D. Spätzle regulates the shape of the Dorsal gradient in the Drosophila embryo. Development. 2001 Jun;128(12):2309–2319. doi: 10.1242/dev.128.12.2309. [DOI] [PubMed] [Google Scholar]
  43. Muresan V., Stankewich M. C., Steffen W., Morrow J. S., Holzbaur E. L., Schnapp B. J. Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: a role for spectrin and acidic phospholipids. Mol Cell. 2001 Jan;7(1):173–183. doi: 10.1016/s1097-2765(01)00165-4. [DOI] [PubMed] [Google Scholar]
  44. Neuman-Silberberg F. S., Schupbach T. Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development. 1994 Sep;120(9):2457–2463. doi: 10.1242/dev.120.9.2457. [DOI] [PubMed] [Google Scholar]
  45. Neuman-Silberberg F. S., Schüpbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell. 1993 Oct 8;75(1):165–174. [PubMed] [Google Scholar]
  46. Nilson L. A., Schüpbach T. Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell. 1998 Apr 17;93(2):253–262. doi: 10.1016/s0092-8674(00)81576-7. [DOI] [PubMed] [Google Scholar]
  47. Norvell A., Kelley R. L., Wehr K., Schüpbach T. Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev. 1999 Apr 1;13(7):864–876. doi: 10.1101/gad.13.7.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pai L. M., Barcelo G., Schüpbach T. D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell. 2000 Sep 29;103(1):51–61. doi: 10.1016/s0092-8674(00)00104-5. [DOI] [PubMed] [Google Scholar]
  49. Palacios I. M., St Johnston D. Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. Annu Rev Cell Dev Biol. 2001;17:569–614. doi: 10.1146/annurev.cellbio.17.1.569. [DOI] [PubMed] [Google Scholar]
  50. Patel N. H., Hayward D. C., Lall S., Pirkl N. R., DiPietro D., Ball E. E. Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development. 2001 Sep;128(18):3459–3472. doi: 10.1242/dev.128.18.3459. [DOI] [PubMed] [Google Scholar]
  51. Peri F., Bökel C., Roth S. Local Gurken signaling and dynamic MAPK activation during Drosophila oogenesis. Mech Dev. 1999 Mar;81(1-2):75–88. doi: 10.1016/s0925-4773(98)00228-7. [DOI] [PubMed] [Google Scholar]
  52. Peri F., Roth S. Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development. 2000 Feb;127(4):841–850. doi: 10.1242/dev.127.4.841. [DOI] [PubMed] [Google Scholar]
  53. Peri Francesca, Technau Martin, Roth Siegfried. Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development. 2002 Jun;129(12):2965–2975. doi: 10.1242/dev.129.12.2965. [DOI] [PubMed] [Google Scholar]
  54. Powers J., Barlowe C. Transport of axl2p depends on erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J Cell Biol. 1998 Sep 7;142(5):1209–1222. doi: 10.1083/jcb.142.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Powers Jacqueline, Barlowe Charles. Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Mol Biol Cell. 2002 Mar;13(3):880–891. doi: 10.1091/mbc.01-10-0499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Queenan A. M., Barcelo G., Van Buskirk C., Schüpbach T. The transmembrane region of Gurken is not required for biological activity, but is necessary for transport to the oocyte membrane in Drosophila. Mech Dev. 1999 Dec;89(1-2):35–42. doi: 10.1016/s0925-4773(99)00196-3. [DOI] [PubMed] [Google Scholar]
  57. Queenan A. M., Ghabrial A., Schüpbach T. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development. 1997 Oct;124(19):3871–3880. doi: 10.1242/dev.124.19.3871. [DOI] [PubMed] [Google Scholar]
  58. Reich A., Sapir A., Shilo B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 1999 Sep;126(18):4139–4147. doi: 10.1242/dev.126.18.4139. [DOI] [PubMed] [Google Scholar]
  59. Reich Aderet, Shilo Ben-Zion. Keren, a new ligand of the Drosophila epidermal growth factor receptor, undergoes two modes of cleavage. EMBO J. 2002 Aug 15;21(16):4287–4296. doi: 10.1093/emboj/cdf439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Riechmann V., Ephrussi A. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev. 2001 Aug;11(4):374–383. doi: 10.1016/s0959-437x(00)00207-0. [DOI] [PubMed] [Google Scholar]
  61. Roth S., Jordan P., Karess R. Binuclear Drosophila oocytes: consequences and implications for dorsal-ventral patterning in oogenesis and embryogenesis. Development. 1999 Feb;126(5):927–934. doi: 10.1242/dev.126.5.927. [DOI] [PubMed] [Google Scholar]
  62. Roth S., Neuman-Silberberg F. S., Barcelo G., Schüpbach T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell. 1995 Jun 16;81(6):967–978. doi: 10.1016/0092-8674(95)90016-0. [DOI] [PubMed] [Google Scholar]
  63. Roth S., Schüpbach T. The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development. 1994 Aug;120(8):2245–2257. doi: 10.1242/dev.120.8.2245. [DOI] [PubMed] [Google Scholar]
  64. Saunders C., Cohen R. S. The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol Cell. 1999 Jan;3(1):43–54. doi: 10.1016/s1097-2765(00)80173-2. [DOI] [PubMed] [Google Scholar]
  65. Schweitzer R., Howes R., Smith R., Shilo B. Z., Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature. 1995 Aug 24;376(6542):699–702. doi: 10.1038/376699a0. [DOI] [PubMed] [Google Scholar]
  66. Schweitzer R., Shilo B. Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 1997 May;13(5):191–196. doi: 10.1016/s0168-9525(97)01091-3. [DOI] [PubMed] [Google Scholar]
  67. Sen J., Goltz J. S., Konsolaki M., Schüpbach T., Stein D. Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. Development. 2000 Dec;127(24):5541–5550. doi: 10.1242/dev.127.24.5541. [DOI] [PubMed] [Google Scholar]
  68. Sen J., Goltz J. S., Stevens L., Stein D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell. 1998 Nov 13;95(4):471–481. doi: 10.1016/s0092-8674(00)81615-3. [DOI] [PubMed] [Google Scholar]
  69. Shmueli Anat, Cohen-Gazala Orit, Neuman-Silberberg F. Shira. Gurken, a TGF-alpha-like protein involved in axis determination in Drosophila, directly binds to the EGF-receptor homolog Egfr. Biochem Biophys Res Commun. 2002 Mar 8;291(4):732–737. doi: 10.1006/bbrc.2002.6426. [DOI] [PubMed] [Google Scholar]
  70. Shvartsman Stanislav Y., Muratov Cyrill B., Lauffenburger Douglas A. Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development. 2002 Jun;129(11):2577–2589. doi: 10.1242/dev.129.11.2577. [DOI] [PubMed] [Google Scholar]
  71. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  72. Stathopoulos Angelike, Levine Michael. Dorsal gradient networks in the Drosophila embryo. Dev Biol. 2002 Jun 1;246(1):57–67. doi: 10.1006/dbio.2002.0652. [DOI] [PubMed] [Google Scholar]
  73. Stauber Michael, Prell Alexander, Schmidt-Ott Urs. A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci U S A. 2002 Jan 2;99(1):274–279. doi: 10.1073/pnas.012292899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Swan A., Nguyen T., Suter B. Drosophila Lissencephaly-1 functions with Bic-D and dynein in oocyte determination and nuclear positioning. Nat Cell Biol. 1999 Nov;1(7):444–449. doi: 10.1038/15680. [DOI] [PubMed] [Google Scholar]
  75. Theurkauf W. E., Smiley S., Wong M. L., Alberts B. M. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development. 1992 Aug;115(4):923–936. doi: 10.1242/dev.115.4.923. [DOI] [PubMed] [Google Scholar]
  76. Thio G. L., Ray R. P., Barcelo G., Schüpbach T. Localization of gurken RNA in Drosophila oogenesis requires elements in the 5' and 3' regions of the transcript. Dev Biol. 2000 May 15;221(2):435–446. doi: 10.1006/dbio.2000.9690. [DOI] [PubMed] [Google Scholar]
  77. Tsruya Rachel, Schlesinger Ayelet, Reich Aderet, Gabay Limor, Sapir Amir, Shilo Ben-Zion. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev. 2002 Jan 15;16(2):222–234. doi: 10.1101/gad.214202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Twombly V., Blackman R. K., Jin H., Graff J. M., Padgett R. W., Gelbart W. M. The TGF-beta signaling pathway is essential for Drosophila oogenesis. Development. 1996 May;122(5):1555–1565. doi: 10.1242/dev.122.5.1555. [DOI] [PubMed] [Google Scholar]
  79. Urban S., Lee J. R., Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001 Oct 19;107(2):173–182. doi: 10.1016/s0092-8674(01)00525-6. [DOI] [PubMed] [Google Scholar]
  80. Urban Sinisa, Lee Jeffrey R., Freeman Matthew. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 2002 Aug 15;21(16):4277–4286. doi: 10.1093/emboj/cdf434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Wasserman J. D., Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell. 1998 Oct 30;95(3):355–364. doi: 10.1016/s0092-8674(00)81767-5. [DOI] [PubMed] [Google Scholar]
  82. Webster P. J., Suen J., Macdonald P. M. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development. 1994 Jul;120(7):2027–2037. doi: 10.1242/dev.120.7.2027. [DOI] [PubMed] [Google Scholar]
  83. Wiley H. Steven, Shvartsman Stanislav Y., Lauffenburger Douglas A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 2003 Jan;13(1):43–50. doi: 10.1016/s0962-8924(02)00009-0. [DOI] [PubMed] [Google Scholar]
  84. van Eeden F., St Johnston D. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr Opin Genet Dev. 1999 Aug;9(4):396–404. doi: 10.1016/S0959-437X(99)80060-4. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES